首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A lattice Boltzmann model (LBM) has been developed for simulating magnetohydrodynamics (MHD) along the line of Dellar [J. Comput. Phys. 179 (2002)95]. In this model the magnetic field is presented by a vector valued magnetic distribution function which obeys a vector Boltzmann equation. The truncated error of the equilibrium distribution in the present model is up to order O(u^4) in velocity u rather than the usual 0(u^3). For verification, the model is applied to solve the shock tube problem and the main features of the flow predicted by the model are found to compare well with the corresponding results obtained with high-order semi-discrete schemes [J. Comput. Phys. 201 (2004) 261]. The numerical experiments have also shown that the present LBM model with the equilibrium distribution truncated at O(u^4) performs much better in terms of numerical stability than those truncated at O(u^3).  相似文献   

2.
A systematic method from the discreteness to the continuity is presented for the dislocation equation of the triangular lattice. A modification of the Peierls equation has been derived strictly. The modified equation includes the higher order corrections of the discrete effect which are important for the core structure of dislocation. It is observed that the modified equation possesses a universal form which is model-independent except the factors. The factors, which depend on the detail of the model, are related to the derivatives of the kernel at its zero point in the wave-vector space. The results open a way to deal with the complicated models because what one needs to do is to investigate the behaviour near the zero point of the kernel in the wave-vector space instead of calculating the kernel completely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号