首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Let \mathbbD \mathbb{D} n denote the unit polydisk and let B n denote the unit ball in \mathbbC \mathbb{C} n , n ≥1. We study weighted composition operators on the α-Bloch spaces Ba {\mathcal{B}^\alpha } ( \mathbbD \mathbb{D} n ), α > 1. We also study Cesàro type operators on the α-Bloch spaces Ba {\mathcal{B}^\alpha } (B n ), α > 0. Bibliography: 15 titles.  相似文献   

2.
We study the limiting behavior of the K?hler–Ricci flow on \mathbbP(O\mathbbPn ?O\mathbbPn(-1)?(m+1)){{\mathbb{P}(\mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus(m+1)})}} for m, n ≥ 1, assuming the initial metric satisfies the Calabi symmetry. We show that the flow either shrinks to a point, collapses to \mathbbPn{{\mathbb{P}^n}} or contracts a subvariety of codimension m + 1 in the Gromov–Hausdorff sense. We also show that the K?hler–Ricci flow resolves a certain type of cone singularities in the Gromov–Hausdorff sense.  相似文献   

3.
In 1998, Kleinbock and Margulis proved Sprindzuk’s conjecture pertaining to metrical Diophantine approximation (and indeed the stronger Baker–Sprindzuk conjecture). In essence, the conjecture stated that the simultaneous homogeneous Diophantine exponent w 0(x) = 1/n for almost every point x on a nondegenerate submanifold M \mathcal{M} of \mathbbRn {\mathbb{R}^n} . In this paper, the simultaneous inhomogeneous analogue of Sprindzuk’s conjecture is established. More precisely, for any “inhomogeneous” vector θ ∈ \mathbbRn {\mathbb{R}^n} we prove that the simultaneous inhomogeneous Diophantine exponent w 0(x , θ) is 1/n for almost every point x on M \mathcal{M} . The key result is an inhomogeneous transference principle which enables us to deduce that the homogeneous exponent w 0(x) is 1/n for almost all xM \mathcal{M} if and only if, for any θ ∈ \mathbbRn {\mathbb{R}^n} , the inhomogeneous exponent w 0(x , θ) = 1/n for almost all xM \mathcal{M} . The inhomogeneous transference principle introduced in this paper is an extremely simplified version of that recently discovered by us. Nevertheless, it should be emphasised that the simplified version has the great advantage of bringing to the forefront the main ideas while omitting the abstract and technical notions that come with describing the inhomogeneous transference principle in all its glory.  相似文献   

4.
We consider a family of operators Hγμ(k), k ∈ \mathbbTd \mathbb{T}^d := (−π,π]d, associated with the Hamiltonian of a system consisting of at most two particles on a d-dimensional lattice ℤd, interacting via both a pair contact potential (μ > 0) and creation and annihilation operators (γ > 0). We prove the existence of a unique eigenvalue of Hγμ(k), k ∈ \mathbbTd \mathbb{T}^d , or its absence depending on both the interaction parameters γ,μ ≥ 0 and the system quasimomentum k ∈ \mathbbTd \mathbb{T}^d . We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum k ∈ \mathbbTd \mathbb{T}^d in the existence domain G ⊂ \mathbbTd \mathbb{T}^d .  相似文献   

5.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

6.
Let \mathbbK\mathbb{K} be a field, G a reductive algebraic \mathbbK\mathbb{K}-group, and G 1G a reductive subgroup. For G 1G, the corresponding groups of \mathbbK\mathbb{K}-points, we study the normalizer N = N G (G 1). In particular, for a standard embedding of the odd orthogonal group G 1 = SO(m, \mathbbK\mathbb{K}) in G = SL(m, \mathbbK\mathbb{K}) we have N ≅ G 1 ⋊ μ m ( \mathbbK\mathbb{K}), the semidirect product of G 1 by the group of m-th roots of unity in \mathbbK\mathbb{K}. The normalizers of the even orthogonal and symplectic subgroup of SL(2n, \mathbbK\mathbb{K}) were computed in [Širola B., Normalizers and self-normalizing subgroups, Glas. Mat. Ser. III (in press)], leaving the proof in the odd orthogonal case to be completed here. Also, for G = GL(m, \mathbbK\mathbb{K}) and G 1 = O(m, \mathbbK\mathbb{K}) we have N ≅ G 1 ⋊ \mathbbK\mathbb{K} ×. In both of these cases, N is a self-normalizing subgroup of G.  相似文献   

7.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

8.
The motivation for this paper comes from the Halperin–Carlsson conjecture for (real) moment-angle complexes. We first give an algebraic combinatorics formula for the M?bius transform of an abstract simplicial complex K on [m]={1,…,m} in terms of the Betti numbers of the Stanley–Reisner face ring k(K) of K over a field k. We then employ a way of compressing K to provide the lower bound on the sum of those Betti numbers using our formula. Next we consider a class of generalized moment-angle complexes ZK(\mathbb D, \mathbb S)\mathcal{Z}_{K}^{(\underline{\mathbb{ D}}, \underline{\mathbb{ S}})}, including the moment-angle complex ZK\mathcal{Z}_{K} and the real moment-angle complex \mathbbRZK\mathbb{R}\mathcal {Z}_{K} as special examples. We show that H*(ZK(\mathbb D, \mathbb S);k)H^{*}(\mathcal{Z}_{K}^{(\underline{\mathbb{ D}}, \underline{\mathbb{ S}})};\mathbf{k}) has the same graded k-module structure as Tor  k[v](k(K),k). Finally we show that the Halperin–Carlsson conjecture holds for ZK\mathcal{Z}_{K} (resp. \mathbb RZK\mathbb{ R}\mathcal{Z}_{K}) under the restriction of the natural T m -action on ZK\mathcal{Z}_{K} (resp. (ℤ2) m -action on \mathbb RZK\mathbb{ R}\mathcal{Z}_{K}).  相似文献   

9.
This paper continues the study of associative and Lie deep matrix algebras, DM(X,\mathbbK){\mathcal{DM}}(X,{\mathbb{K}}) and \mathfrakgld(X,\mathbbK){\mathfrak{gld}}(X,{\mathbb{K}}), and their subalgebras. After a brief overview of the general construction, balanced deep matrix subalgebras, BDM(X,\mathbbK){\mathcal{BDM}}(X,{\mathbb{K}}) and \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}), are defined and studied for an infinite set X. The global structures of these two algebras are studied, devising a depth grading on both as well as determining their ideal lattices. In particular, \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) is shown to be semisimple. The Lie algebra \mathfrakbld(X,\mathbbK){\mathfrak{bld}}(X,{\mathbb{K}}) possesses a deep Cartan decomposition and is locally finite with every finite subalgebra naturally enveloped by a semi-direct product of \mathfraksln{\mathfrak{{sl}_n}}’s. We classify all associative bilinear forms on \mathfraksl2\mathfrakd{\mathfrak{sl}_2\mathfrak{d}} (a natural depth analogue of \mathfraksl2{\mathfrak{{sl}_2}}) and \mathfrakbld{\mathfrak{bld}}.  相似文献   

10.
In this paper, we consider massless Dirac fields propagating in the outer region of de Sitter–Reissner–Nordstr?m black holes. We show that the metric of such black holes is uniquely determined by the partial knowledge of the corresponding scattering matrix S(λ) at a fixed energy λ ≠ 0. More precisely, we consider the partial wave scattering matrices S(λ, n) (here λ ≠ 0 is the fixed energy and n ? \mathbbN*{n \in \mathbb{N}^{*}} denotes the angular momentum) defined as the restrictions of the full scattering matrix on a well chosen basis of spin-weighted spherical harmonics. We prove that the mass M, the square of the charge Q 2 and the cosmological constant Λ of a dS-RN black hole (and thus its metric) can be uniquely determined from the knowledge of either the transmission coefficients T(λ, n), or the reflexion coefficients R(λ, n) (resp. L(λ, n)), for all n ? L{n \in {\mathcal{L}}} where L{\mathcal{L}} is a subset of \mathbbN*{\mathbb{N}^{*}} that satisfies the Müntz condition ?n ? L\frac1n = +¥{\sum_{n \in{\mathcal{L}}}\frac{1}{n} = +\infty} . Our main tool consists in complexifying the angular momentum n and in studying the analytic properties of the “unphysical” scattering matrix S(λ, z) in the complex variable z. We show, in particular, that the quantities \frac1T(l,z){\frac{1}{T(\lambda,z)}}, \fracR(l,z)T(l,z){\frac{R(\lambda,z)}{T(\lambda,z)}} and \fracL(l,z)T(l,z){\frac{L(\lambda,z)}{T(\lambda,z)}} belong to the Nevanlinna class in the region ${\{z \in \mathbb{C}, Re(z) > 0 \}}${\{z \in \mathbb{C}, Re(z) > 0 \}} for which we have analytic uniqueness theorems at our disposal. Eventually, as a by-product of our method, we obtain reconstruction formulae for the surface gravities of the event and cosmological horizons of the black hole which have an important physical meaning in the Hawking effect.  相似文献   

11.
Let x(t),t ? [ 0,1 ] \xi (t),t \in \left[ {0,1} \right] , be a jump Lévy process. By Px {\mathcal{P}_\xi } we denote the law of in the Skorokhod space \mathbbD {\mathbb{D}} [0, 1]. Under some nondegeneracy condition on the Lévy measure Λ of the process, we construct a group of Px {\mathcal{P}_\xi } -preserving transformations of the space \mathbbD {\mathbb{D}} [0, 1]. Bibliography: 10 titles.  相似文献   

12.
Let $ \mathcal{K} $ \mathcal{K} (ℝ) stand for the hyperspace of all nonempty compact sets on the real line and let d ±(x;E) denote the (right- or left-hand) Lebesgue density of a measurable set E ⊂ ℝ at a point x∈ ℝ. In [3] it was proved that
$ \{ K \in \mathcal{K}(\mathbb{R}):\forall _x \in K(d^ + (x,K) = 1ord^ - (x,K) = 1)\} $ \{ K \in \mathcal{K}(\mathbb{R}):\forall _x \in K(d^ + (x,K) = 1ord^ - (x,K) = 1)\}   相似文献   

13.
In this paper, we mainly study polynomial generalized Vekua-type equation _boxclose)w=0{p(\mathcal{D})w=0} and polynomial generalized Bers–Vekua equation p(D)w=0{p(\mathcal{\underline{D}})w=0} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} where D{\mathcal{D}} and D{\mathcal{\underline{D}}} mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including (D-l)kw=0,(D-l)kw=0(k ? \mathbbN){\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)} with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}. Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}, and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}.  相似文献   

14.
We study hypersurfaces in the Lorentz-Minkowski space \mathbbLn+1{\mathbb{L}^{n+1}} whose position vector ψ satisfies the condition L k ψ = + b, where L k is the linearized operator of the (k + 1)th mean curvature of the hypersurface for a fixed k = 0, . . . , n − 1, A ? \mathbbR(n+1)×(n+1){A\in\mathbb{R}^{(n+1)\times(n+1)}} is a constant matrix and b ? \mathbbLn+1{b\in\mathbb{L}^{n+1}} is a constant vector. For every k, we prove that the only hypersurfaces satisfying that condition are hypersurfaces with zero (k + 1)th mean curvature, open pieces of totally umbilical hypersurfaces \mathbbSn1(r){\mathbb{S}^n_1(r)} or \mathbbHn(-r){\mathbb{H}^n(-r)}, and open pieces of generalized cylinders \mathbbSm1(r)×\mathbbRn-m{\mathbb{S}^m_1(r)\times\mathbb{R}^{n-m}}, \mathbbHm(-r)×\mathbbRn-m{\mathbb{H}^m(-r)\times\mathbb{R}^{n-m}}, with k + 1 ≤ m ≤ n − 1, or \mathbbLm×\mathbbSn-m(r){\mathbb{L}^m\times\mathbb{S}^{n-m}(r)}, with k + 1 ≤ nm ≤ n − 1. This completely extends to the Lorentz-Minkowski space a previous classification for hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} given by Alías and Gürbüz (Geom. Dedicata 121:113–127, 2006).  相似文献   

15.
Let Π n d denote the space of all spherical polynomials of degree at most n on the unit sphere $\mathbb{S}^{d}Let Π n d denote the space of all spherical polynomials of degree at most n on the unit sphere \mathbbSd\mathbb{S}^{d} of ℝ d+1, and let d(x,y) denote the geodesic distance arccos xy between x,y ? \mathbbSdx,y\in\mathbb{S}^{d} . Given a spherical cap
B(e,a)={x ? \mathbbSd:d(x,e) £ a}    (e ? \mathbbSd, a ? (0,p) is bounded awayfrom p),B(e,\alpha)=\big\{x\in\mathbb{S}^{d}:d(x,e)\leq\alpha\big\}\quad \bigl(e\in\mathbb{S}^{d},\ \alpha\in(0,\pi)\ \mbox{is bounded awayfrom}\ \pi\bigr),  相似文献   

16.
For open discrete mappings f:D\{ b } ? \mathbbR3 f:D\backslash \left\{ b \right\} \to {\mathbb{R}^3} of a domain D ì \mathbbR3 D \subset {\mathbb{R}^3} satisfying relatively general geometric conditions in D \ {b} and having an essential singularity at a point b ? \mathbbR3 b \in {\mathbb{R}^3} , we prove the following statement: Let a point y 0 belong to [`(\mathbbR3)] \f( D\{ b } ) \overline {{\mathbb{R}^3}} \backslash f\left( {D\backslash \left\{ b \right\}} \right) and let the inner dilatation K I (x, f) and outer dilatation K O (x, f) of the mapping f at the point x satisfy certain conditions. Let B f denote the set of branch points of the mapping f. Then, for an arbitrary neighborhood V of the point y 0, the set Vf(B f ) cannot be contained in a set A such that g(A) = I, where I = { t ? \mathbbR:| t | < 1 } I = \left\{ {t \in \mathbb{R}:\left| t \right| < 1} \right\} and g:U ? \mathbbRn g:U \to {\mathbb{R}^n} is a quasiconformal mapping of a domain U ì \mathbbRn U \subset {\mathbb{R}^n} such that A ⊂ U.  相似文献   

17.
Let W í \Bbb C\Omega \subseteq {\Bbb C} be a simply connected domain in \Bbb C{\Bbb C} , such that {¥} è[ \Bbb C \[`(W)]]\{\infty\} \cup [ {\Bbb C} \setminus \bar{\Omega}] is connected. If g is holomorphic in Ω and every derivative of g extends continuously on [`(W)]\bar{\Omega} , then we write gA (Ω). For gA (Ω) and z ? [`(W)]\zeta \in \bar{\Omega} we denote SN (g,z)(z) = ?Nl=0\fracg(l) (z)l ! (z-z)lS_N (g,\zeta )(z)= \sum^{N}_{l=0}\frac{g^{(l)} (\zeta )}{l !} (z-\zeta )^l . We prove the existence of a function fA(Ω), such that the following hold:
i)  There exists a strictly increasing sequence μn ∈ {0, 1, 2, …}, n = 1, 2, …, such that, for every pair of compact sets Γ, Δ ⊂ [`(W)]\bar{\Omega} and every l ∈ {0, 1, 2, …} we have supz ? G supw ? D \frac?l?wl Smnf,z) (w)-f(l)(w) ? 0,    as n ? + ¥    and\sup_{\zeta \in \Gamma} \sup_{w \in \Delta} \frac{\partial^l}{\partial w^l} S_{\mu_ n} (\,f,\zeta) (w)-f^{(l)}(w) \rightarrow 0, \hskip 7.8pt {\rm as}\,n \rightarrow + \infty \quad {\rm and}
ii)  For every compact set K ì \Bbb CK \subset {\Bbb C} with K?[`(W)] = ?K\cap \bar{\Omega} =\emptyset and Kc connected and every function h: K? \Bbb Ch: K\rightarrow {\Bbb C} continuous on K and holomorphic in K0, there exists a subsequence { m¢n }n=1\{ \mu^\prime _n \}^{\infty}_{n=1} of {mn }n=1\{\mu_n \}^{\infty}_{n=1} , such that, for every compact set L ì [`(W)]L \subset \bar{\Omega} we have supz ? L supz ? K Sm¢nf,z)(z)-h(z) ? 0,    as  n? + ¥.\sup_{\zeta \in L} \sup_{z\in K} S_{\mu^\prime _n} (\,f,\zeta )(z)-h(z) \rightarrow 0, \hskip 7.8pt {\rm as} \, n\rightarrow + \infty .
  相似文献   

18.
Let α be a complex number of modulus strictly greater than 1, and let ξ ≠ 0 and ν be two complex numbers. We investigate the distribution of the sequence ξ α n  + ν, n = 0, 1, 2, . . . , modulo ${\mathbb{Z}[i],}Let α be a complex number of modulus strictly greater than 1, and let ξ ≠ 0 and ν be two complex numbers. We investigate the distribution of the sequence ξ α n  + ν, n = 0, 1, 2, . . . , modulo \mathbbZ[i],{\mathbb{Z}[i],} where i=?{-1}{i=\sqrt{-1}} and \mathbbZ[i]=\mathbbZ+i\mathbbZ{\mathbb{Z}[i]=\mathbb{Z}+i\mathbb{Z}} is the ring of Gaussian integers. For any z ? \mathbbC,{z\in \mathbb{C},} one may naturally call the quantity z modulo \mathbbZ[i]{\mathbb{Z}[i]} the fractional part of z and write {z} for this, in general, complex number lying in the unit square S:={z ? \mathbbC:0 £ \mathfrakR(z),\mathfrakJ(z) < 1 }{S:=\{z\in\mathbb{C}:0\leq \mathfrak{R}(z),\mathfrak{J}(z) <1 \}}. We first show that if α is a complex non-real number which is algebraic over \mathbbQ{\mathbb{Q}} and satisfies |α| > 1 then there are two limit points of the sequence {ξ α n  +ν}, n = 0, 1, 2, . . . , which are ‘far’ from each other (in terms of α only), except when α is an algebraic integer whose conjugates over \mathbbQ(i){\mathbb{Q}(i)} all lie in the unit disc |z| ≤  1 and x ? \mathbbQ(a,i).{\xi\in\mathbb{Q}(\alpha,i).} Then we prove a result in the opposite direction which implies that, for any fixed a ? \mathbbC{\alpha\in\mathbb{C}} of modulus greater than 1 and any sequence zn ? \mathbbC,n=0,1,2,...,{z_n\in\mathbb{C},n=0,1,2,\dots,} there exists x ? \mathbbC{\xi \in \mathbb{C}} such that the numbers ξ α n z n , n = 0, 1, 2, . . . , all lie ‘far’ from the lattice \mathbbZ[i]{\mathbb{Z}[i]}. In particular, they all can be covered by a union of small discs with centers at (1+i)/2+\mathbbZ[i]{(1+i)/2+\mathbb{Z}[i]} if |α| is large.  相似文献   

19.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

20.
Let n ≥ 1 be an integer and let P n be the class of polynomials P of degree at most n satisfying z n P(1/z) = P(z) for all zC. Moreover, let r be an integer with 1 ≤ rn. Then we have for all PP n :
$ \alpha _n (r)\int_0^{2\pi } {|P(e^{it} )|^2 dt} \leqslant \int_0^{2\pi } {|P^r (e^{it} )|^2 dt} \leqslant \beta _n (r)\int_0^{2\pi } {|P(e^{it} )|^2 dt} $ \alpha _n (r)\int_0^{2\pi } {|P(e^{it} )|^2 dt} \leqslant \int_0^{2\pi } {|P^r (e^{it} )|^2 dt} \leqslant \beta _n (r)\int_0^{2\pi } {|P(e^{it} )|^2 dt}   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号