首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Large-amplitude (geometrically nonlinear) forced vibrations of circular cylindrical shells with different boundary conditions are investigated. The Sanders-Koiter nonlinear shell theory, which includes in-plane inertia, is used to calculate the elastic strain energy. The shell displacements (longitudinal, circumferential and radial) are expanded by means of a double mixed series: harmonic functions for the circumferential variable and three different formulations for the longitudinal variable; these three different formulations are: (a) Chebyshev orthogonal polynomials, (b) power polynomials, and (c) trigonometric functions. The same formulation is applied to study different boundary conditions; results are presented for simply supported and clamped shells. The analysis is performed in two steps: first a liner analysis is performed to identify natural modes, which are then used in the nonlinear analysis as generalized coordinates. The Lagrangian approach is applied to obtain a system of nonlinear ordinary differential equations. Different expansions involving from 14 to 34 generalized coordinates, associated with natural modes of both simply supported and clamped-clamped shells, are used to study the convergence of the solution. The nonlinear equations of motion are studied by using arclength continuation method and bifurcation analysis. Numerical responses obtained in the spectral neighborhood of the lowest natural frequency are compared with results available in literature.  相似文献   

2.
A set of two-dimensional nonlinear equations for thin electroelastic shells in vibrations with moderately large thickness-shear deformations are obtained from the variational formulation of the three-dimensional equations of nonlinear electroelasticity by expanding the mechanical displacement vector and the electric potential into power series in the shell thickness coordinate and retaining lower order terms. As an example, the equations are used to study nonlinear thickness-shear vibrations of a circular cylindrical shell driven by an electric voltage. Nonlinear amplitude-frequency behavior of electric current near strong resonance is obtained.  相似文献   

3.
The vibrations of stiffened cylindrical shells having axisymmetric or asymmetric initial geometrical imperfections and axial preload are analyzed. The analysis is based on a solution of the von Kárman-Donnell non-linear shell equations, an “exact” solution of the compatibility equation, and a first order approximation by the Galerkin method of the equilibrium equation. The stiffeners are closely spaced and “smeared” stiffener theory is employed. The results of an extensive parametric study carried out on shells similar to those used in vibration and buckling tests at the Technion show that stiffening of the shell will lower the imperfection-sensitivity of its free vibrations, but the decrease depends on the type of stiffening (stringers or rings), the mode shapes of the vibration and the imperfection, the stiffener strength and eccentricity. The imperfection-sensitivity decrease, caused by the stiffeners, is greater for vibration mode shapes with high imperfection-sensitivity than for other vibration mode shapes. The sensitivity differences between stringer and ring-stiffened shells depend especially on the vibration and the imperfection mode shapes, and on their coupling. Small imperfections change the natural frequencies of stiffened shells in the same directions as for isotropic shells, but to a smaller extent. The frequency dependence on the external load is also strongly affected by the imperfection mode shape. The results correlate well with earlier ones for isotropic shells.  相似文献   

4.
The large amplitude free flexural vibrations of thin, orthotropic, eccentrically and lightly stiffened elastic rectangular plates are investigated. Clamped boundary conditions with movable in-plane edge conditions are assumed. A simple modal form of one-term transverse displacement is used and in-plane displacements are made to satisfy the in-plane equilibrium equations. By using Lagrange's equation, the modal equations for the nonlinear free vibration of stiffened plates are obtained for the cases when the stiffeners are assumed to be smeared out over the entire surface of the plate, and when the stiffeners are located at finite intervals. Numerical results are obtained for various possibilities of stiffening and for different aspect ratios of the plate. By particularizing the problem to different known cases, the results obtained here are compared with available analytical and experimental results, and the agreement is good.  相似文献   

5.
In the present study, the geometrically nonlinear vibrations of circular cylindrical shells, subjected to internal fluid flow and to a radial harmonic excitation in the spectral neighbourhood of one of the lowest frequency modes, are investigated for different flow velocities. The shell is modelled by Donnell's nonlinear shell theory, retaining in-plane inertia and geometric imperfections; the fluid is modelled as a potential flow with the addition of unsteady viscous terms obtained by using the time-averaged Navier-Stokes equations. A harmonic concentrated force is applied at mid-length of the shell, acting in the radial direction. The shell is considered to be immersed in an external confined quiescent liquid and to contain a fluid flow, in order to reproduce conditions in previous water-tunnel experiments. For the same reason, complex boundary conditions are applied at the shell ends simulating conditions intermediate between clamped and simply supported ends. Numerical results obtained by using pseudo-arclength continuation methods and bifurcation analysis show the nonlinear response at different flow velocities for (i) a fixed excitation amplitude and variable excitation frequency, and (ii) fixed excitation frequency by varying the excitation amplitude. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented, as well as the maximum Lyapunov exponent, in order to classify the system dynamics. In particular, periodic, quasi-periodic, sub-harmonic and chaotic responses have been detected. The full spectrum of the Lyapunov exponents and the Lyapunov dimension have been calculated for the chaotic response; they reveal the occurrence of large-dimension hyperchaos.  相似文献   

6.
Governing equations of motion for vibrations of a general multilayered plate consisting of an arbitrary number of alternate stiff and soft layers of orthotropic materials are derived by using variational principles. Extension, bending and in-plane shear deformations in stiff layers and only transverse shear deformations in soft layers are considered as in conventional sandwich structural analysis. In addition to transverse inertia, longitudinal translatory and rotary inertias are included, as such analysis gives higher order modes of vibration and leads to accurate results for relatively thick plates. Vibration and damping analysis of rectangular simply supported plates consisting of alternate elastic and viscoelastic layers is carried out by taking a series solution and applying the correspondence principle of linear viscoelasticity. The damping effectiveness, in term of the system loss factor, for all families of modes for three-, five- and seven-layered plates is evaluated and its variations with geometrical and material property parameters are investigated.  相似文献   

7.
This paper concerns the free vibrations of cylindrical shells with elastic boundary conditions. Based on the Flügge classical thin shell theory, the equations of motion for the cylindrical shells are solved by the method of wave propagations. The wave numbers are obtained by directly solving an eighth order equation. The elastic-support boundary conditions can be arbitrarily specified in terms of 8 independent sets of distributed springs. All the classical homogeneous boundary conditions can be considered as the special cases when the stiffness for each set of springs is equal to either infinity or zero. The present solutions are validated by the results previously given by other researchers and/or obtained using finite element models. The effects on the frequency parameters of elastic restraints are investigated for shells of different geometrical characteristics.  相似文献   

8.
The aim of this paper is to provide a contemporarily relevant survey of studies on non-linear vibrations of shell-type structures. The effects of geometrical non-linearity, and specific difficulties encountered in non-linear dynamic analysis of shell-type structures are presented and discussed. Studies on non-linear vibrations of shells are categorized by different shell configurations (shapes) in a chronological order. Also, the most commonly used methods of modelling and solution are reviewed and commented. Published reviews on non-linear vibrations of shell-type structures including complicating effects of anisotropy, initial stress, added mass, elastic foundation, stiffeners, open geometry (singly and doubly curved), transverse shear deformations, torsion, and interaction with fluid are also surveyed. Comments on the previous non-linear works are presented and some orientations for future research are suggested. Another purpose of this paper is to provide engineers, scientists and researchers with a list of 175 references, which should be very useful for locating relevant existing literature quickly.  相似文献   

9.
The damping of cylindrical shells coated with unconstrained layers of viscoelastic material either on one side of the shell (inside or outside) or on both sides is estimated. The basic equations of motion are derived which describe harmonic forced flexural damped vibrations in axisymmetric modes. For pure sinusoidal modes expressions for the overall loss factors are given. The damping properties of cylindrical shells of finite length, coated on the inside or outside, or on both sides (symmetrically or unsymmetrically) are compared. Classical thin shell theory is used for the analysis. It is shown how two-layered damped shells differ from two-layered damped beams. The extent of damping reduction in shells resulting from the fact that the shell cross-section is closed is discussed.  相似文献   

10.
Free vibrations of a semi-infinite cylindrical shell, localized near the edge of the shell are investigated. The dynamic equations in the Kirchhoff-Love theory of shells are subjected to asymptotic analysis. Three types of localized vibrations, associated with bending, extensional, and super-low-frequency semi-membrane motions, are determined. A link between localized vibrations and Rayleigh-type bending and extensional waves, propagating along the edge, is established. Different boundary conditions on the edge are considered. It is shown that for bending and super-low-frequency vibrations the natural frequencies are real while for extensional vibrations they have asymptotically small imaginary parts. The latter corresponds to the radiation to infinity caused by coupling between extensional and bending modes.  相似文献   

11.
The non-linear dynamic behaviour of infinitely long circular cylindrical shells in the case of plane strains is examined and results are compared with previous studies. A theoretical model based on Hamilton's principle and spectral analysis previously developed for non-linear vibration of thin straight structures (beams and plates) is extended here to shell-type structures, reducing the large-amplitude free vibration problem to the solution of a set of non-linear algebraic equations. In the present work, the transverse displacement is assumed to be harmonic and is expanded in the form of a finite series of functions corresponding to the constrained vibrations, which exclude the axisymmetric displacements. The non-linear strain energy is expressed by taking into account the non-linear terms due to the considerable stretching of the shell middle surface induced by large deflections. It has been shown that the model presented here gives new results for infinitely long circular cylindrical shells and can lead to a good approximation for determining the fundamental longitudinal mode shape and the associated higher circumferencial mode shapes (n>3) of simply supported circular cylindrical shells of finite length. The non-linear results at small vibration amplitudes are compared with linear experimental and theoretical results obtained by several authors for simply supported shells. Numerical results (non-linear frequencies, vibration amplitudes and basic function contributions) of infinite shells associated to the first four mode shapes of free vibrations, are obtained, using a multi-mode approach and are summarized in tables. Good agreement is found with results from previous studies for both small and large amplitudes of vibration. The non-linear mode shapes are plotted and discussed for different thickness to radius ratios. The distributions of the bending stresses associated with the mode shapes are given and compared with those obtained via the linear theory.  相似文献   

12.
Donnel's equations are used to predict nonlinear vibrations of cylindrical shells, which are excited by parametric dynamical load. A multi-degree-of-freedom dynamical system of cylindrical shells is derived. The nonlinear modes of the parametrically excited system are treated. The analyses have been carried out both with and without dissipation, using the Harmonic Balance Method. These nonlinear modes correspond to the standing waves in the shell. Traveling waves are also analyzed in detail. We come to the conclusion that the behavior of the nonlinear modes and the traveling waves are similar.  相似文献   

13.
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur’e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.  相似文献   

14.
In this paper, free vibrations of a cross-ply composite shell with or without a uniformly distributed attached mass are analyzed using higher order shell theory. The results of free vibrations without distributed attached mass are validated by previous literatures. The stiffness effect of this distributed attached mass are also considered and compared with those well-known published results in which this effect is ignored. Various results for composite shells under a variety of conditions such as variations in the thickness of the shell, variation in the thickness of the distributed attached mass, variation in the radii of curvatures and various elasticity moduli are presented in this paper. In some cases, to verify the novel results, first-order shear deformation theory (FSDT) is also used. In this paper, parameters which influence the natural frequencies of the shells with attached mass including the stiffness of the mass are investigated. Parameters which are investigated in this paper are thickness of the shell, thickness of the distributed attached mass, elasticity moduli of the distributed attached mass and radius of curvatures of shells. Increasing the thickness or elasticity moduli of the distributed attached mass will increase the fundamental natural frequency of the shell. The effect of the stiffness of the distributed attached mass is decreased by decreasing the radii of curvatures or increasing the thickness of the shells.  相似文献   

15.
Theoretical analysis is performed on the linear dynamic equations of thin cylindrical shells to find the error committed by making the Donnell assumption and the neglect of in-plane inertia. At first, the effect of these approximations is studied on a shell with classical simply supported boundary condition. The same approximations are then investigated for other boundary conditions from a consistent approximate solution of the eigenvalue problem. The Donnell assumption is valed at frequencies high compared with the ring frequencies, for finite length thin shells. The error in the eigenfrequencies from omitting tangential inertia is appreciable for modes with large circumferential and axial wave lengths, independent of shell thickness and boundary conditions.  相似文献   

16.
Free vibration characteristics of filament wound anisotropic shells of revolution are investigated by using multisegment numerical integration technique in combination with a modified frequency trial method. The applicability of multisegment numerical integration technique is extended to the solution of free vibration problem of anisotropic composite shells of revolution through the use of finite exponential Fourier transform of the fundamental shell equations. The governing shell equations comprise the full anisotropic form of the constitutive relations, including first-order transverse shear deformation, and all components of translatory and rotary inertia. The variation of the stiffness coefficients along the axis of the shell is also incorporated into the solution method. Filaments are assumed to be placed along the geodesic fiber path on the shell of revolution resulting in the variation of the stiffness coefficients along the axis of the composite shell of revolution with general meridional curvature. Sample solutions have been performed on the effect of the variation of the stiffness coefficients on the free vibration behavior of filament wound truncated conical and spherical shells of revolution.  相似文献   

17.
Based on the first order shear deformation theory and classic buckling theory, the paper investigates the creep buckling behavior of viscoelastic laminated plates and laminated circular cylindrical shells. The analysis and elaboration of both instantaneous elastic critic load and durable critic load are emphasized. The buckling load in phase domain is obtained from governing equations by applying Laplace transform, and the instantaneous elastic critic load and durable critic load are determined according to the extreme value theorem for inverse Laplace transform. It is shown that viscoelastic approach and quasi-elastic approach yield identical solutions for these two types of critic load respectively. A transverse disturbance model is developed to give the same mechanics significance of durable critic load as that of elastic critic load. Two types of critic loads of boron/epoxy composite laminated plates and circular cylindrical shells are discussed in detail individually, and the influencing factors to induce creep buckling are revealed by examining the viscoelasticity incorporated in transverse shear deformation and in-plane flexibility.  相似文献   

18.
The free vibration of circular cylindrical thin shells, made up of uniform layers of isotropic or specially orthotropic materials, is studied using point collocation method and employing spline function approximations. The equations of motion for the shell are derived by extending Love's first approximation theory. Assuming the solution in a separable form a system of coupled differential equations, in the longitudinal, circumferential and transverse displacement functions, is obtained. These functions are approximated by Bickley-type splines of suitable orders. The process of point collocation with suitable boundary conditions results in a generalized eigenvalue problem from which the values of a frequency parameter and the corresponding mode shapes of vibration, for specified values of the other parameters, are obtained. Two types of boundary conditions and four types of layers are considered. The effect of neglecting the coupling between the flexural and extensional displacements is analysed. The influences of the relative layer thickness, a length parameter and a total thickness parameter on the frequencies are studied. Both axisymmetric and asymmetric vibrations are investigated. The effect of the circumferential node number on the vibrational behaviour of the shell is also analysed.  相似文献   

19.
The vibrations of a multi-segment cylindrical shell with a common mean radius are studied. The shell is uniform for any segment but the material and geometric properties may vary from segment to segment. The solution is based on the component mode method coupled with Fourier series and Lagrange multipliers. It is shown that a single segment shell with boundary conditions of free support without tangential constraint is sufficient for an arbitrary shell with arbitrary boundary conditions. Results are presented for simply supported shells and clamped-free shells for two segments with different length and thickness.  相似文献   

20.
Employing Biot's theory of wave propagation in liquid saturated porous media, axially symmetric vibrations of fluid-filled and empty poroelastic circular cylindrical shells of infinite extent are investigated for different wall-thicknesses. Let the poroelastic cylindrical shells are homogeneous and isotropic. The frequency equation of axially symmetric vibrations each for a pervious and an impervious surface is derived. Particular cases when the fluid is absent are considered both for pervious and impervious surfaces. The frequency equation of axially symmetric vibrations propagating in a fluid-filled and an empty poroelastic bore, each for a pervious and an impervious surface is derived as a limiting case when ratio of thickness to inner radius tends to infinity as the outer radius tends to infinity. Cut-off frequencies when the wavenumber is zero are obtained for fluid-filled and empty poroelastic cylindrical shells both for pervious and impervious surfaces. When the wavenumber is zero, the frequency equation of axially symmetric shear vibrations is independent of nature of surface, i.e., pervious or impervious and also it is independent of presence of fluid in the poroelastic cylindrical shell. Non-dimensional phase velocity for propagating modes is computed as a function of ratio of thickness to wavelength in absence of dissipation. These results are presented graphically for two types of poroelastic materials and then discussed. In general, the phase velocity of an empty poroelastic cylindrical shell is higher than that of a fluid-filled poroelastic cylindrical shell.The phase velocity of a fluid-filled bore is higher than that of an empty poroelastic bore. Previous results are shown as a special case of present investigation. Results of purely elastic solid are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号