首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Pb doped metastable tetragonal ZrO2 (t-ZrO2:Pb) nanoparticles have been successfully synthesized by hydrothermal method. Pb ion doping has great effects on the phases, crystallite sizes and optical band gaps. Systematic structural characterization revealed that the introduction of Pb ion results in lattice expansion. The as-prepared t-ZrO2:Pb with ca 4–6 nm in size has high specific surface area (>150 m2/g) and narrow particle size distributions. The diffuse reflectance spectra investigated that the band gap shifts from ultraviolet (Eg = 5.19 eV) for pure ZrO2 to the visible region for t-ZrO2:Pb and the gap can be effectively adjusted with the content of Pb in nanocrystals. Through thermal treatment, Pb ion doped in ZrO2 crystals was excluded with increasing temperature. At 800 °C, the three t-ZrO2:Pb samples of ZPO-2, ZPO-3 and ZPO-4 still contained the pure tetragonal phase, in which Pb content were not reduced to zero, while the transformation from tetragonal to monoclinic phase occurred due to zero Pb content in ZPO-1. The reason to this transformation and stabilized mechanism of Pb ion in ZrO2 were discussed.  相似文献   

2.
For the utilization as inorganic/organic hybrid nanomaterials for optical purposes, nanocrytalline tetragonal ZrO2 was synthesized by hydrothermal method using zirconium(IV)-n-propoxide as precursor material. Surface of the ZrO2 particles was then modified with 2-acetoacetoxyethyl methacrylate used as a copolymer for coatings. X-ray diffraction analysis revealed that both ZrO2 and modified ZrO2 are in tetragonal crystalline phase. As proved by transmission electron microscope and particle size analysis, average particle sizes of ZrO2 and modified ZrO2 were found as 6.22 and 14.7 nm, respectively. ZrO2 powder was easily dispersed either in water or n-hexane. Ultraviolet diffuse reflectance spectrophotometer analysis for ZrO2 and surface modified ZrO2 showed that maximum absorption peaks are at 215 and 225 nm, respectively.  相似文献   

3.
In this letter, we present a facile route to produce metastable tetragonal zirconia (ZrO2) nanoparticles via pH-controlled precipitation of dilute zirconyl nitrate dihydrate [ZrO(NO3)2·2H2O] solution in liquid NH3 under ambient conditions and calcination at 500 °C for 2 h. The phase pure tetragonal ZrO2 nanoparticles are obtained at pH 9. The effect of pH on metastable phase stabilization in precipitated ZrO2 nanoparticles is demonstrated with the help of XRD, SEM/EDX, and X-ray photoelectron spectroscopy techniques. The stability of tetragonal ZrO2 phase is attributed to the smaller crystallite size and greater oxygen deficiency in phase-pure tetragonal ZrO2.  相似文献   

4.
The formation of hollow binary ZrO2/TiO2 oxide fibers using mixed precursor solutions was achieved by activated carbon fibers templating technique combined with solvothermal process. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), UV-vis, and infrared (IR) spectroscopy. The binary oxide system shows the anatase-type TiO2 and tetragonal phase of ZrO2, and the introduction of ZrO2 notably inhibits the growth of TiO2 nanocrystallites. Although calcined at 575 °C, all hollow ZrO2/TiO2 fibers exhibit higher surface areas (>113 m2/g) than pure TiO2 hollow fibers. The Pyridine adsorption on ZrO2/TiO2 sample indicates the presence of stronger surface acid sites. Such properties bring about that the binary oxide system possesses higher efficiency and durable activity stability for photodegradation of gaseous ethylene and trichloromethane than P25 TiO2. In addition, the macroscopic felt form for the resulting materials is more beneficial for practical applications than traditional catalysts forms.  相似文献   

5.
Nano-composite TiO2?CZrO2 materials were prepared via sol?Cgel processes by hydrolysis of mixtures of titanium- and zirconium-containing alkoxides with TiO2:ZrO2 ratios of 1:2, 1:1, 2:1, and 10:1. Precipitated powders were dried at room temperature and annealed in ambient air at temperatures between 350 and 500?°C for 4?h. Pure TiO2 and ZrO2 powders were synthesized for comparison. Samples were characterized with X-ray diffraction (XRD) and X-ray absorption near edge fine structure (XANES). The detailed analysis of those data provides the crystalline and amorphous phase composition as well as the crystallite particle size. According to XRD and XANES analysis, only the two pure oxide samples and one of the composite samples with a composition TiO2:ZrO2?=?10:1, crystallized. Both titania containing powders, the pure TiO2 and the TiO2:ZrO2?=?10:1 composite, were found to crystallize in the anatase structure. ZrO2 was found to stay amorphous in the composites but crystalline in the pure oxide. In the crystallized composite TiO2:ZrO2?=?10:1 sample, the concentration of the amorphous phase remains larger than in pure TiO2 samples, but the crystallite size was found to be nearly constant with increasing annealing temperature in contrast to the increasing particle size of pure TiO2-samples. Pure TiO2 precipitates are amorphous directly after preparation, however they crystallize after 6?month storage at ambient conditions by aging. Such an aging was not observed for the TiO2:ZrO2 composites.  相似文献   

6.
ZrO2 nanoparticles were synthesized through arc discharge of zirconium electrodes in deionized (DI) water. X-ray diffraction (XRD) analysis of the as prepared nanoparticles indicates formation a mixture of nanocrystalline ZrO2 monoclinic and tetragonal phase structures. Transmission electron microscopy (TEM) images illustrate spherical ZrO2 nanoparticles with 7–30 nm diameter range, which were formed during the discharge process with 10 A arc current. The average particle size was found to increase with the increasing arc current. X-ray photoelectron spectroscopy (XPS) analysis confirms formation of ZrO2 at the surface of the nanoparticles. Surface area of the sample prepared at 10 A arc current, measured by BET analysis, was 44 m2/g. Photodegradation of Rhodamine B (Rh. B) shows that the prepared samples at lower currents have a higher photocatalytic activity due to larger surface area and smaller particle size.  相似文献   

7.
The phase transformation and crystalline growth of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) precursor powders have been investigated using the coprecipitation route, using zirconium oxide chloride octahydrate (ZrOCl2·8H2O) and yttrium nitrate (Y(NO3)3·6H2O) as the initial materials. Differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED), and high resolution TEM (HRTEM) were utilized to characterize the behavior of phase transformation and crystalline growth of the 4Y-PSZ precursor powders after calcined. Tetragonal ZrO2 crystallization occurred at about 718.2 K. The activation energy of tetragonal ZrO2 crystallization was 227.0 ± 17.4 kJ/mol, obtained by a non-isothermal method. The growth morphology parameter (n) and growth mechanism index were close to 2.0, showing that tetragonal ZrO2 had a plate-like morphology. The crystalline size of tetragonal ZrO2 increased from 7.9 to 27.6 nm when the calcination temperature was increased from 973 to 1,273 K. The activation energies of tetragonal ZrO2 growth were 14.97 ± 0.33 and 84.46 ± 6.65 kJ/mol when precursor powders after calcined from 723–973 and 973–1,273 K, respectively.  相似文献   

8.
Without using any acid or base catalyst, complexing agent or zirconium alkoxides, ZrO2–SiO2 mixed oxide with the ZrO2 content of 50 mol% was prepared by combination of sol–gel and alcohol-aqueous heating method using zirconyl nitrate and tetraethoxysilane as starting materials. The structural and surface acidic properties were characterized by FT-IR, XRD, NH3-TPD and pyridine adsorption FTIR. Compared with another mixed oxide with the same ZrO2 content prepared by mechanical grinding, the obtained ZrO2–SiO2 mixed oxide was homogeneously mixed in molecular level. The existed Zr–O–Si hetero-linkages strongly retarded the ZrO2 particle growth. The obtained mixed oxide maintained amorphous phase until it was calcined at 1,173 K for 3 h when crystallization of tetragonal zirconia took place. NH3-TPD and pyridine adsorption FTIR showed that both Brønsted and Lewis acidity were largely developed in the mixed oxide and most of the acidic sites belonged to the medium acidity. Because of the existence of abundant medium acidity, the mixed oxide showed catalytic activity for tetrahydrofuran polymerization. Furthermore, the produced poly tetramethylene ether glycol had moderate average molecular weight around 2,000. Neither the pure oxides nor the mixed oxide prepared by the mechanical grinding presented catalytic activity for this reaction.  相似文献   

9.
采用胶晶模板技术结合光还原方法制备了Pt掺杂复合材料三维有序大孔Pt/ZrO2(3DOM Pt/ZrO2)。通过X-射线衍射(XRD)、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)、紫外–可见漫反射吸收光谱(UV–Vis/DRS)和氮气吸附–脱附等测试方法对纳米复合材料3DOM Pt/ZrO2的晶相、组成、结构、形貌以及表面物理化学性质等进行表征。结果表明,Pt掺杂复合材料3DOM Pt/ZrO2与单体ZrO2的晶相相一致,其形貌呈现三维有序大孔结构,且孔结构排列整齐有序,孔壁为介孔结构。经光还原作用后该复合材料中Pt主要以单质形式存在,并且均匀分布在三维有序复合材料表面。同时,与单体ZrO2相比,纳米复合材料3DOM Pt/ZrO2的BET比表面积显著增大,光吸收性能发生改变,在240–350 nm间呈现强吸收。另外,在多模式光降解实验中,3DOM Pt/ZrO2的光活性明显增强。同时,其光解水制氢性能差不多是P25的2.5倍。  相似文献   

10.
Ag doped ZrO2 thin films were deposited on quartz substrates by sol–gel dip coating technique. The effect of Ag doping on tetragonal to monoclinic phase transformation of ZrO2 at a lower temperature (500 °C) was investigated by X-ray diffraction. It is found that the Ag doping promotes the phase transformation. The phase transformation can be attributed to the increase in the tetragonal grain size and concentration of oxygen vacancies in the presence of the Ag dopant. Accumulation of the Ag atoms at the film surface and surface morphology changes in the films were observed by AFM as a function of varying Ag concentration. X-ray photoelectron spectroscopy gave Ag 3d and O 1s spectra on Ag doped thin film. The chemical states of Ag have been identified as the monovalent state of Ag+ ions in ZrO2. The Ag doped ZrO2 thin films demonstrated the tailoring of band gap values. It is also found that the intensity of room temperature photoluminescence spectra is suppressed with Ag doping.  相似文献   

11.
《先进技术聚合物》2018,29(1):587-593
In the study, hydroxypropyl guar gum (HPG) gel is prepared by using Nano‐ZrO2 particles as the cross‐linking agent. The Nan‐ZrO2 particles are prepared by using oil‐water interface method. The physical properties such as morphology, particle size, and crystal structure of the Nano‐ZrO2 particles are analyzed by SEM, particle size analyzer, FT‐IR, and XRD, respectively. The results show that the Nano‐ZrO2 particles are spherical particles with a little agglomeration; these spherical particles have a tetragonal structure and higher crystallinity, and the mean diameter of the first‐level grain is 24 nm. The rheological properties including shear stress, complex modulus, elasticity modulus (G′), and viscosity modulus (G′′) of the Nano‐ZrO2 cross‐linked HPG gel are investigated. The results show that the Nano‐ZrO2 cross‐linked HPG gel is a pseudo‐plastic non‐Newtonian fluid with higher elastic modulus (G′ > G′′) and lower tanδ (tanδ < 1, the ratio of viscous and elastic modulus), which indicate that the Nano‐ZrO2 cross‐linked HPG gel may have potential application in fracturing.  相似文献   

12.
Labaki  M.  Lamonier  J.-F.  Siffert  S.  Zhilinskaya  E. A.  Aboukaïs  A. 《Kinetics and Catalysis》2004,45(2):227-233
The catalytic oxidation of propene and toluene has been investigated on pure ZrO2, pure Y2O3, and ZrO2 doped with 1, 5, and 10 mol % Y2O3 in the presence or absence of copper (0.5, 1, and 5 wt%). A synergetic effect has been detected since ZrO2 and Y2O3 exhibit significantly lower activities than the mixed oxides. The higher surface areas, related to structural change from mononoclinic (ZrO2) to tetragonal (ZrO2–;;Y2O3), partly explained the higher activity of ZrO2–;;Y2O3. However, it has been shown that the number of anionic vacancies, created by the substitution of Zr4+ by Y3+, in yttria-stabilized zirconia solids depends on the yttrium contents. Their effect on propene and toluene oxidation activity is significant. The anionic vacancies should induce better activity of the ZrO2—5 mol % Y2O3 catalyst with or without copper, which presents the higher number of Zr3+ species. This support should favor the formation of CuO particles, which should be the most active catalytic sites in the studied reaction.  相似文献   

13.
The dependence of the activity of СuO/ZrO2 catalysts in the CO oxidation reaction with oxygen in the presence of an excess of hydrogen and adsorption of СО over them on the CuO content (0.5 to 15%) and the structure of the support ZrO2, monoclinic (М), tetragonal (Т), or mixed (М + Т) has been studied. It has been found that the activity of CuO/ZrO2 is associated with the adsorption capacity of the samples for СО at 20°С. Thus, 5%CuO/ZrO2(Т + М) and 5% CuO/ZrO2(Т) samples, which exhibit the maximum activity (the СО conversion over them is 80–85% at 160°С), also possess a high chemisorption capacity towards CO (~2.2 × 1020 molecules/g). At the same time, CuO/ZrO2(М) samples with the CuO contents of 1 and 5% do not chemisorb СО and are inactive in the reaction at 160°С. The СО conversion over them does not exceed 32–36% at 250°С. On the basis of the data obtained by X-ray phase analysis, temperature-programmed reduction with Н2, temperature-programmed СО desorption, and electron paramagnetic resonance, a conclusion has been made that at low temperatures СО oxidation proceeds over CunOm clusters that are located on ZrO2(Т) crystallites. With the increase in the copper oxide content from 0.5 to 5%, the activity of the clusters increases, while the reaction temperature decreases. CuOm oxo complexes and particles of the СuO phase do not exhibit catalytic activity. The reasons for the low activity of the CuO/ZrO2(М) samples with the CuO contents of 1 and 5% in the СО oxidation and adsorption processes are discussed. The mechanism of the low-temperature СО oxidation with oxygen in an excess of hydrogen over a 5% CuO/ZrO2(Т + М) catalyst is considered.  相似文献   

14.
The effect of alkali metals deposition on zirconia has been studied in the oxidation of carbon black, considered as a model of diesel soot. The study of the influence of alkali content and alkali precursor was undertaken for K/ZrO2, evidencing a better activity for a catalyst prepared with an atomic ratio K/Zr = 0.14 and from a nitrate precursor. Using the latter preparation conditions, alkali/ZrO2 are found to be active in the oxidation of carbon black according the sequence ZrO2 < Li/ZrO2 < Na/ZrO2 < K/ZrO2 < Rb/ZrO2 < Cs/ZrO2. Alkali metals have an influence on the tetragonal–monoclinic crystalline modification. Alkali metals ions with low size tend to stabilize the tetragonal ZrO2 phase whereas those with higher ionic radius favour the tetragonal–monoclinic modification. Fourier transform-infrared spectroscopy (FTIR) and temperature programmed reduction (TPR) measurements show that the catalytic activity partially depends on the presence of nitrate species stabilized in alkali/ZrO2 even after calcination treatment at 600 °C. Nitrate species are more stable in the presence of alkali with high ionic radius than those of low size.  相似文献   

15.
Samples of a precursor for an alumina ceramic reinforced by zirconium dioxide were synthesized. The samples have a uniform structure and are characterized by high ratios of the tetragonal and monoclinic modifications of ZrO2, tlm, after a thermal treatment (1250°C). The structure of samples in the system Al2O3-ZrO2 is formed under conditions favorable for deposition of products of hydrolysis of Al(III) ions on the surface of ZrO2 sol particles in decomposition of urea. The coating of ZrO2 sol particles by products of hydrolysis of Al(III) salts was confirmed by electrophoresis. The size distribution of particles of the in?dividual ZrO2 sol was determined by small-angle X-ray scattering. The structure of the products formed in thermal treatment of samples of mixed oxides Al2O3-ZrO2 was characterized by X-ray phase analysis and scanning electron microscopy. The porosity and specific surface area of a thermally treated sample was determined by measuring nitrogen absorption isotherms.  相似文献   

16.
The nanocrystalline cubic, tetragonal, and submicron monoclinic phases of pure zirconia were prepared by thermal decomposition of carbonate and hydroxide precursors. The crystallization and isothermal phase transformations of the oxide were studied using high temperature X‐ray diffraction, X‐ray diffraction and Raman spectra of quenched samples. Cubic zirconia formed first, and then progressively transformed to tetragonal and monoclinic phases at temperatures as low as 320°C. The cubic, tetragonal, and monoclinic phases for ZrO2 were found to be distinct functions of crystallite size, indicating the nanocrystalline nature of these phases. They were found to exist within critical size ranges of 50 to 140 Å, 100 to 220 Å and 190 to 420 Å (±5 Å), respectively. Thus, as the crystallites grow during annealing, they first transform from cubic to tetragonal and then from tetragonal to monoclinic at critical sizes. The classical Avrami equation for nucleation and growth was applied to the tetragonal to monoclinic phase transition.  相似文献   

17.
《印度化学会志》2021,98(8):100089
Monoclinic Zirconia (ZrO2NPs) nanoparticles were successfully prepared by non-toxic and low-cost production using green synthesis analysis from the methanolic extract of Helianthus annuus (sunflower) seeds as the reducing agent. Mechanism of the chemical reaction has shown the reduction and which confirmed the formation of nanoparticles via chemical bonding in the IR spectrum at 502-498 ​cm-1 ZrO2 nanoparticles were characterized as sharp peak at 275 ​nm in the UV-Vis spectrum with 3.7eV in photon energy bandgap, it confirms the monoclinic crystal structure, as well as x-ray diffractometry, reveals zirconia crystallite is 40.59 ​nm. The internal morphology of crystal structure is exhibited by Scanning Electron Microscopy (SEM), and Transmission Electron Microscope (TEM). The stability of nanoparticles is represented in terms of zeta potential (-9.32 ​mV) and particle size distribution (~331 ​nm). Biosynthesized ZrO2NPs were indicated as superior antimicrobial activity for biomedical applications.  相似文献   

18.
In this study, synthesis and characterization of two polymorphs of a new nano-sized zirconium(IV) complex, [ZrO(dmph)I2] (1), {dmph = 2,9-dimethyl-1,10-phenanthroline (neocuproine)}, have been investigated in two different solvents. The reaction between zirconyl nitrate pentahydrate and potassium iodide with dmph as a ligand under ultrasonic irradiation in methanol and mono-ethylene glycol (MEG) leads to the formation of the nano-sized Zr(IV) complex. Characterization of the Zr(IV) complex has been performed using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and elemental analysis. The thermal stability of the compound 1 has been studied by thermal gravimetric and differential thermal analyses. Particle sizes of the compound 1 have been decreased after thermal treatments in an autoclave. Pure monoclinic (m) and tetragonal (t) zirconia (ZrO2) nanoparticles were readily synthesized from thermal decomposition of the Zr(IV) complex as a new precursor in presence of methanol and MEG as solvents, respectively. Zirconium oxide was characterized by FT-IR, XRD, and SEM to depict the phase and morphology. The results showed that, pure zirconia was produced with particle size about 59 nm and crystal system was monoclinic when methanol was used as a solvent during complexation process. On the other hand, particle sizes of zirconia with tetragonal structure were significantly reduced to about 39 nm, when MEG was used as solvent.  相似文献   

19.
Composite ZrO2-SiO2 powders, with different ZrO2 contents, including pure ZrO2 powders, were prepared by precipitation in SiO2 suspensions, of zirconia gels from solutions of zirconyl chloride at pH = 11. These products were investigated in connection with the phase changes in ZrO2 caused by heat-treatments. ZrO2-SiO2 mixtures containing 0–100% mol ZrO2, were studied by differential thermal analysis (DTA), X-ray powder diffraction (XRD), temperature programmed desorption combined with mass spectroscopy (TPD-MS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), to obtain information on the morphological and structural features of the particles before and during the heat treatment up to 1200°C. Specific surface areas were determined using nitrogen adsorption by the BET method. The results offer an explanation about some of the factors which can be influencing on the stabilization of metastable-cubic/tetragonal (C/T) phase of ZrO2 and the evolution of surface areas (vulcano profile) observed in the composites.  相似文献   

20.
为了提高BaTiO3粒子在含水复合弹性体中的电场响应能力,本文采用简单的水热合成法,在不引入任何表面活性剂的情况下,仅通过对反应温度和溶液pH值的调控获得了新颖形貌的钛酸钡粒子。通过借助X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)及接触角(Contact Angle)测量等手段对粒子的微观结构和表面特性进行表征发现:该粒子为高纯四方相枝晶簇结构,具有良好的亲水性,而且在含水复合弹性体中对电场具有优良的响应能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号