首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phased microphone arrays have become an important tool in the localization of noise sources for aeroacoustic applications. In most practical aerospace cases the conventional beamforming algorithm of the delay-and-sum type has been adopted. Conventional beamforming cannot take advantage of knowledge of the noise field, and thus has poorer resolution in the presence of noise and interference. Adaptive beamforming has been used for more than three decades to address these issues and has already achieved various degrees of success in areas of communication and sonar. In this work an adaptive beamforming algorithm designed specifically for aeroacoustic applications is discussed and applied to practical experimental data. It shows that the adaptive beamforming method could save significant amounts of post-processing time for a deconvolution method. For example, the adaptive beamforming method is able to reduce the DAMAS computation time by at least 60% for the practical case considered in this work. Therefore, adaptive beamforming can be considered as a promising signal processing method for aeroacoustic measurements.  相似文献   

3.
The radiation environment on LDEF was monitored by cumulative absorbed dose measurements made with TLDs at different locations and shielding depths. The TLDs were included in four experiments: A0015(a) Biostack, P0004 Seeds in Space and P0006 Linear Energy Transfer Spectrum Measurements at the trailing edge (west side) of the satellite; M0004 Fiber Optics Data Link at the leading edge (east side); and A0015(b) Biostack at the Earth side. The shielding depths varied between 0.48 and 15.4 g/cm2, Al equivalent. Both the directional dependence of trapped protons incident on the satellite and the shielding thickness were reflected in absorbed dose values.

The trapped proton anisotropy was measured by TLDs at the east and west sides of LDEF. At the east side doses ranged from 2.10 to 2.58 Gy under shielding of 2.90 to 1.37 g/cm2 (M0004) while on the west side doses ranged from 2.66 to 6.48 Gy under shielding of 15.4 to 0.48 g/cm2 (P0006). The west side doses were more than a factor of two higher, where the vertical shielding thicknesses to space were equal. Other west side doses of 3.04 to 4.49 Gy under shielding of 11.7 to 3.85 g/cm2 (A0015(a)) and 2.91 to 6.64 Gy under shielding of 11.1 to 0.48 g/cm2 (P0004) generally agreed with the P0006 results. The Earth side doses of 2.41 to 3.93 Gy under shielding of 10.0 to 1.66 g/cm2 (A0015(b)) were intermediate between the east side and west side doses.

Calculations utilizing a model of trapped proton spectra were performed by Watts et al. (1993) and comparisons of dose measurement and calculations may be found in a companion paper (Armstrong et al., 1996).  相似文献   


4.
5.
6.
《Comptes Rendus Physique》2003,4(9):993-1008
Mechanical properties of carbon nanotubes are discussed based on recent advances in both modeling and experiment. To cite this article: R.S. Ruoff et al., C. R. Physique 4 (2003).  相似文献   

7.
Gold nanoshells are concentric spherical constructs that possess highly desirable optical responses in the near infrared. Gold nanoshells consist of a thin outer gold shell and a silica core and can be used for both diagnostic and therapeutic purposes by tuning the optical response through changing the core–shell ratio as well as the overall size. Although optical properties of gold nanoshells have already been well documented, the reflectance characteristics are not well understood and have not yet been elucidated by experimental measurements. Yet, in order to use gold nanoshells as an optical contrast agent for scattering-based optical methods such as reflectance spectroscopy, it is critical to characterize the reflectance behavior. With this in mind, we used a fiber-optic-based spectrometer to measure diffuse reflectance of gold nanoshell suspensions from 500 nm to 900 nm. Experimental results show that gold nanoshells cause a significant increase in the measured reflectance. Spectral features associated with scattering from large angles (~180°) were observed at low nanoshell concentrations. Monte Carlo modeling of gold nanoshells reflectance demonstrated the efficacy of using such methods to predict diffuse reflectance. Our studies suggest that gold nanoshells are an excellent candidate as optical contrast agents and that Monte Carlo methods are a useful tool for optimizing nanoshells best suited for scattering-based optical methods.  相似文献   

8.
This paper presents theoretical and experimental studies of axisymmetric longitudinal guided wave L(0,2) interaction with the free edge of the pipe. A numerical method based on normal mode superposition is applied to predict the edge resonance by an analysis of dispersion relations of separate modes. In parallel, the finite element analysis and experimental measurements prove the existence of edge resonance in the pipe in case of L(0,2) wave incidence. It is shown that the edge resonance is mainly caused by the first pair of complex modes. Additionally the behavior of edge resonance phenomenon as a function of the curvature of the pipe is studied. The displacement amplitudes measured at the edge demonstrate that the edge resonance is affected by the frequency and thickness to midradius ratio of the pipe, and it is losing its strength in thicker pipes, as the growing difference between the outer and inner radii destroys symmetry. The reflected energy amplitudes show that at the resonance frequencies the incident wave is strongly converted to L(0,1) and L(0,3) modes, depending also on the curvature parameter of the pipe.  相似文献   

9.
We show how the early data runs of the LHC can provide valuable checks of the different components of the formalism used to predict the cross sections of central exclusive processes. The ‘soft’ rapidity gap survival factor can be studied in electroweak processes, such as W+gaps events, for which the bare amplitude is well known. The generalised gluon distribution, in the appropriate kinematic region, can be probed by exclusive Υ production. The perturbative QCD effects, especially the Sudakov-like factor, can be probed by exclusive two- and three-jet production. We discuss the possible role of enhanced absorptive corrections that would violate the soft–hard factorisation implied in the usual formalism, and we suggest ways that the LHC may explore their presence.  相似文献   

10.
An aeroacoustic approach to phonation   总被引:2,自引:0,他引:2  
A fluid mechanical, or aeroacoustic, point of view is followed to study possible sources of sound during phonation. Concentration is on two features of the vocal tract during phonation: abrupt area change from the glottis to the vocal tract and the finite length of the vocal tract. With these features, a source of sound distinct from the volume velocity source can be identified and a preliminary account of its effect on the acoustic field given. This source of sound is an oscillating force resulting from an interaction of rotational fluid motion with itself. Because of the schematic nature of the geometry of the model used here, this source may be considerably modified in actual phonation. It is concluded that specification of volume velocity is not enough to specify the source during phonation, even neglecting source-tract interaction.  相似文献   

11.
Wideband RELAX and wideband CLEAN for aeroacoustic imaging   总被引:1,自引:0,他引:1  
Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.  相似文献   

12.
In this paper, several covariance-based approaches are proposed for aeroacoustic noise source analysis under the assumptions of a single dominant source and all observers contaminated solely by uncorrelated noise. The Crame?r-Rao Bounds (CRB) of the unbiased source power estimates are also derived. The proposed methods are evaluated using both simulated data as well as data acquired from an airfoil trailing edge noise experiment in an open-jet aeroacoustic facility. The numerical examples show that the covariance-based algorithms significantly outperform an existing least-squares approach and provide accurate power estimates even under low signal-to-noise ratio (SNR) conditions. Furthermore, the mean-squared-errors (MSEs) of the so-obtained estimates are close to the corresponding CRB especially for a large number of data samples. The experimental results show that the power estimates of the proposed approaches are consistent with one another as long as the core analysis assumptions are obeyed.  相似文献   

13.
CAA broadband noise prediction for aeroacoustic design   总被引:1,自引:0,他引:1  
The current status of a computational aeroacoustics (CAA) approach to simulate broadband noise is reviewed. The method rests on the use of steady Reynolds averaged Navier-Stokes (RANS) simulation to describe the time-averaged motion of turbulent flow. By means of synthetic turbulence the steady one-point statistics (e.g. turbulence kinetic energy) and turbulent length- and time-scales of RANS are translated into fluctuations having statistics that very accurately reproduce the initial RANS target-setting. The synthetic fluctuations are used to prescribe sound sources which drive linear perturbation equations. The whole approach represents a methodology to solve statistical noise theory with state-of-the-art CAA tools in the time-domain. A brief overview of the synthetic turbulence model and its numerical discretization in terms of the random particle-mesh (RPM) and fast random particle-mesh (FRPM) method is given. Results are presented for trailing-edge noise, slat noise, and jet noise. Some problems related to the formulation of vortex sound sources are discussed.  相似文献   

14.
Design and performance of a small-scale aeroacoustic wind tunnel   总被引:3,自引:0,他引:3  
The D5 aeroacoustic wind tunnel at Beihang University is a newly commissioned small-scale closed-circuit wind tunnel with low turbulence intensity and low background noise. The wind tunnel is built to study both aerodynamic and aeroacoustic performance of aircraft components or scaled models. The wind tunnel has two types of test sections, the closed type test section is used for aerodynamic tests while the open type test section is mainly used for aeroacoustic experiments. Both types of test section are 1 m in height and 1 m in width, and the maximum wind velocity in the test section can be up to 80 m/s. An anechoic chamber is built surrounding the test section to provide the non-reflecting condition. This paper provides an overview of design criteria and performance of the small-scale wind tunnel. The layout of the wind tunnel and some critical design treatments to improve aerodynamic and acoustic performance are discussed in detail. Some experiments are conducted to verify the performance of D5 wind tunnel, results confirm that the turbulence intensity is less than 0.08% in the core of test section and the background noise is comparable with other aeroacoustic wind tunnels. A scaled simplified nose landing gear model is also measured as a benchmark test, results reveal that noise radiated from the model is adequately higher than the background noise for a wide frequency range and remarkably consistent with other results from literatures.  相似文献   

15.
High-lift devices on modern airliners are a major contributor to overall airframe noise. In this paper the aeroacoustics of leading-edge slat devices in a high-lift configuration are investigated computationally. A hierarchical methodology is used to enable the rapid evaluation of different slat configurations. The overall goal is to gain a deeper understanding of the noise generation and amplification mechanisms in and around the slat, and the effects of slat system geometry.In order to perform parametric studies of the aeroacoustics, a simplified 2-D model of the slat is used. The flow and aeroacoustics are computed using a compressible, unsteady, Reynolds-Averaged Navier-Stokes code. A robust buffer zone boundary condition is used to prevent the reflection of outgoing acoustic waves from contaminating the long-time solution. A Ffowcs Williams-Hawkings solver is used to compute the far field acoustic field from the unsteady flow solution and determine the directivity. The spanwise correlation length used is derived from experimental data of this high-lift configuration. The effect of spanwise correlation length on the acoustic far field is examined.The aeroacoustics of the slat system are largely governed by the geometry, especially in terms of slat overlap. We perform a study of the effects of trailing edge thickness, horizontal and vertical overlap settings for the slat on near field wave propagation and far field directivity. The implications for low-noise leading edge slat design are discussed.  相似文献   

16.
Comparisons have been made between measured and predicted results for the radiation field in both highly absorbing and scattering aqueous suspensions with a highly reflecting or absorbing bottom. Predictions were based on a discrete ordinate solution to the equation of transfer, with the requisite properties (extinction coefficient, absorption coefficient and scattering phase function) obtained from measurements performed on samples extracted from the suspensions. All trends in the data were predicted by the model, although poor numerical agreement was obtained for suspensions of large albedo and extinction coefficient. The disagreement is attributed to the effect of multiple scattering on the property measurements.  相似文献   

17.
In situ testing determined the insertion loss (IL) and absorption coefficients of a candidate absorptive noise barrier (soundwall) to abate railway noise for residents of Anaheim, CA. A 4000 m barrier is proposed south of the tracks, but residential areas to the north have expressed concerns that barrier reflections will increase their noise exposure. To address these concerns, a 3.66 m high by 14.6 m long demonstration barrier was built in the parking lot of Edison Field, Anaheim, as part of a public open house, thereby allowing for acoustical measurements.Insertion loss (IL) was measured in third-octave bands assuming 1/2-scale construction. The IL for three, scaled railway noise sub-sources (rail/wheel interface, locomotive, and train horn) was measured at six, scaled distances. The highest total, A-weighted IL, after corrections for finite-barrier and point-source speaker effects was 22 dB(A) for rail/wheel noise, 18 dB(A) for locomotive noise, and 20 dB(A) for train horn noise. These results can be compared favourably to IL predictions made using algorithms from the US Federal Rail Administration (FRA) noise assessment guidelines. For the actual barrier installation, shielded residential receivers located south of the project are expected to see their future noise exposures reduced from an unmitigated 78 CNEL to 65 CNEL.Absorption coefficients were measured using time delay spectrometry. At lower frequencies, measured absorption coefficients were notably less than the reverberation room results advertised in the manufacturer's literature, but generally conformed with impedance tube results. At higher frequencies the correspondence between measured absorption coefficients and reverberation room results was much improved. For the actual barrier installation, unshielded residential receivers to the north are expected to experience noise exposure increases of less than 1 dB(A). This factor of increase is consistent with a finding of no impact when assessed using FRA guidelines for allowable increases of noise exposure.  相似文献   

18.
A numerical algorithm for acoustic noise predictions based on solving Lilley's third order wave equation in the time-space domain is developed for a subsonic axisymmetric jet. The sound field is simulated simultaneously with the source field calculation, which is based on a direct solution of the compressible Navier-Stokes equations. The computational domain includes both the nearfield and a portion of the acoustic farfield. In the simulation, the detailed sound source structure is provided by the nearfield direct numerical simulation (DNS), while the sound field is obtained from both the DNS and the numerical solution to the non-linear Lilley's equation. The source terms of Lilley's equation are used to identify the apparent sound source locations in the idealized axisymmetric low-Reynolds number jet. The sound field is mainly discussed in terms of instantaneous pressure fluctuations, frequency spectra, acoustic intensity and directivity. A good agreement is found between the predictions from the axisymmetric Lilley's equation and the DNS results for the sound field. Limitations and perspectives of the simulation are also discussed.  相似文献   

19.
The investigation of the wall pressure excitations over transportation vehicle panel is of great interest to improve the knowledge of vehicle interior noise transmission and also for future noise reduction strategies. A particularly useful task concerns the characterization and the separation of both acoustic and turbulent components of the wall pressure excitation. A new application of the Proper Orthogonal Decomposition (POD) is tested from two different databases: (i) wall pressure fields synthesized from theoretical average models and (ii) wall pressure fields obtained from Lattice Boltzmann Method numerical simulation. In each case, POD application leads to an energetic partitioning of the wall pressure field that permits to well decouple both acoustic and turbulent fields, especially for mid and high frequencies under interest. To validate such separation and to demonstrate the effectiveness of the POD method, the wavenumber spectrum analysis as well as phase analysis is successively performed. Such a new splitting method provides an instantaneous acoustic–turbulent separation of an inhomogeneous wall pressure field, suggesting many useful future applications.  相似文献   

20.
The large velocity dispersion recently reported could be explained by a gap stiffness model incorporated into the Biot model (the BIMGS model) proposed by the author. However, at high frequencies, some measured results have been reported for negative velocity dispersion and attenuation proportional to the first to fourth power of frequency. In this study, first, it is shown that the results of velocity dispersion and attenuation calculated using the BIMGS model are consistent with the results measured in two kinds of water-saturated sands with different grain sizes, except in the high-frequency range. Then, the velocity dispersion and attenuation in six kinds of water-saturated glass beads and four kinds of water-saturated silica sands with different grain sizes are measured in the frequency ranges of 80-140 and 300-700 kHz. The measured results are compared with those calculated using the BIMGS model plus some acoustic models. It is shown that the velocity dispersion and attenuation are well predicted by using the BIMGS model in the range of kd ≤ 0.5 (k: wavenumber in water, d: grain diameter) and by using the BIMGS model plus multiple scattering effects in the range of kd ≥ 0.5 in which negative velocity dispersion appears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号