首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张善元  张涛 《中国物理 B》2010,19(11):110307-110307
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom-pressible inviscid fluid is studied.The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model.Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall,a set of nonlinear partial differential equations governing the prop-agation of nonlinear pressure wave in the solid-liquid coupled system is obtained.In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT).Selecting the expo-nent α of the perturbation parameter in Gardner-Morikawa transformation according to the order of viscous coefficient η,three kinds of evolution equations with soliton solution,i.e.Korteweg-de Vries (KdV)-Burgers,KdV and Burgers equations are deduced.By means of the method of traveling-wave solution and numerical calculation,the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail.Finally,as a example of practical application,the propagation of pressure pulses in large blood vessels is discussed.  相似文献   

2.
为了研究导波在被孔隙介质约束的弹性杆结构中的传播规律,分析孔隙参数对导波传播特性的影响,本文建立了无限大孔隙介质包裹圆柱体的理论模型,利用孔隙介质弹性波动理论,分析了导波的频散曲线,以及圆柱半径和孔隙参数对于导波传播特性的影响。结果表明,在该结构中传播的纵向导波存在频散特性。内部圆柱半径的改变影响波导结构,从而影响导波传播。外部孔隙介质的渗透率对于导波频散的影响较小,孔隙度的改变影响孔隙介质体波波速,从而影响导波频散曲线的截止频率。同时,导波存在较小的衰减,且衰减随孔隙度增大而增大。这些结果对于后续开展无限大介质包裹弹性杆结构的超声无损评价提供了一定的理论参考。  相似文献   

3.
Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.  相似文献   

4.
Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for evaluating and characterizing the hidden and/or inaccessible damage/degradation in solid media. Increasing attention on the development of the testing method based on nonlinear ultrasonic guided waves is largely attributed to the theoretical advances of nonlinear guided waves propagation in solid media. One of the typical acoustic nonlinear responses is the generation of second harmonics that can be used to effectively evaluate damage/degradation in materials/structures. In this paper, the theoretical progress of second-harmonic generation(SHG) of ultrasonic guided wave propagation in solid media is reviewed. The advances and developments of theoretical investigations on the effect of SHG of ultrasonic guided wave propagation in different structures are addressed. Some obscure understandings and the ideas in dispute are also discussed.  相似文献   

5.
李卫彬  邓明晰  项延训 《中国物理 B》2017,26(11):114302-114302
Considering the high sensitivity of the nonlinear ultrasonic measurement technique and great advantages of the guided wave testing method, the use of nonlinear ultrasonic guided waves provides a promising means for evaluating and characterizing the hidden and/or inaccessible damage/degradation in solid media. Increasing attention on the development of the testing method based on nonlinear ultrasonic guided waves is largely attributed to the theoretical advances of nonlinear guided waves propagation in solid media. One of the typical acoustic nonlinear responses is the generation of second harmonics that can be used to effectively evaluate damage/degradation in materials/structures. In this paper, the theoretical progress of second-harmonic generation (SHG) of ultrasonic guided wave propagation in solid media is reviewed. The advances and developments of theoretical investigations on the effect of SHG of ultrasonic guided wave propagation in different structures are addressed. Some obscure understandings and the ideas in dispute are also discussed.  相似文献   

6.
This article quantitatively investigates ultrasound propagation in numerical anisotropic porous media with finite-difference simulations in 3D. The propagation media consist of clusters of ellipsoidal scatterers randomly distributed in water, mimicking the anisotropic structure of cancellous bone. Velocities and attenuation coefficients of the ensemble-averaged transmitted wave (also known as the coherent wave) are measured in various configurations. As in real cancellous bone, one or two longitudinal modes emerge, depending on the micro-structure. The results are confronted with two standard theoretical approaches: Biot’s theory, usually invoked in porous media, and the Independent Scattering Approximation (ISA), a classical first-order approach of multiple scattering theory. On the one hand, when only one longitudinal wave is observed, it is found that at porosities higher than 90% the ISA successfully predicts the attenuation coefficient (unlike Biot’s theory), as well as the existence of negative dispersion. On the other hand, the ISA is not well suited to study two-wave propagation, unlike Biot’s model, at least as far as wave speeds are concerned. No free fitting parameters were used for the application of Biot’s theory. Finally we investigate the phase-shift between waves in the fluid and the solid structure, and compare them to Biot’s predictions of in-phase and out-of-phase motions.  相似文献   

7.
那仁满都拉 《物理学报》2014,63(19):194301-194301
根据Mindlin理论,考虑宏观尺度非线性效应、二次和三次微尺度非线性效应以及微尺度频散效应,建立了描述一维微结构固体中纵波传播的一种新模型.用动力系统定性分析理论,分析了微结构固体中孤立波的存在条件及其几何特征,证明了当介质参数和孤立波传播速度满足适当条件时,在二次微尺度非线性效应的影响下微结构固体中可以形成一种非对称孤立波,在三次微尺度非线性效应的影响下微结构固体中可以形成一种对称孤立波.最后,用数值方法进一步验证了上述结论.  相似文献   

8.
A phenomenological model for thermal relaxation and wave propagation in ideal polyatomic gases is developed by introducing a dynamical non‐equilibrium temperature. The system of equations governing the evolution of the gas is derived and the speeds of propagation of thermo‐mechanical disturbances together with the Rankine‐Hugoniot jump conditions for shock waves are calculated. The hyperbolic theories of heat propagation in incompressible fluids and rigid solids are recovered as particular cases. For rigid solids, the well posedness of the Cauchy problem is proved by a classical method.  相似文献   

9.
It is well established now that the solar atmosphere, from photosphere to the corona and the solar wind is a highly structured medium. Satellite observations have confirmed the presence of steady flows. Here, we investigate the parallel propagation of magnetohydrodynamic (MHD) surface waves travelling along an ideal incompressible flowing plasma slab surrounded by flowing plasma environment in the framework of the Hall magnetohydrodynamics. The propagation properties of the waves are studied in a reference frame moving with the mass flow outside the slab. In general, flows change the waves’ phase velocities compared to their magnitudes in a static MHD plasma slab and the Hall effect limits the range of waves’ propagation. On the other hand, when the relative Alfvénic Mach number is negative, the flow extends the waves propagation range beyond that limit (owing to the Hall effect) and can cause the triggering of the Kelvin-Helmholtz instability whose onset begins at specific critical wave numbers. It turns out that the interval of Alfvénic Mach numbers for which the surface modes are unstable critically depends on the ratio between mass densities outside and inside the flux tube.  相似文献   

10.
Two-dimensional wave propagation is studied in an isothermal linear isotropic elastic material with voids rotating with constant angular velocity based on a theory of elastic material with voids developed by Ie?an (1986) in the thermoelastic context. It is found that there exist three coupled plane waves propagating with distinct phase speeds. The presence of voids and the rotation of the medium are responsible for this coupling. In the absence of voids, the classical longitudinal and transverse waves are found to be coupled through the rotation of the medium. At very large frequency or when the angular rotation is very small relative to the wave frequency the waves are decoupled and propagate with distinct phase speeds. These are (i) a longitudinal wave, (ii) a transverse wave and (iii) a longitudinal wave corresponding to the change in void volume fraction. The first two correspond to the waves of classical elasticity, while the third is new and arises from the presence of the voids. The results are illustrated graphically.  相似文献   

11.
In this article, an asymptotic and numerical analysis of combustion wave propagation in shell–core composite solid energetic material is undertaken based on the diffusional–thermal model with an overall Arrhenius reaction step. Flame speed and structure are found for a broad range of parameter values. Two different regimes of flame propagation are identified. In the weak recuperation regime, the temperatures of the shell and core are monotonic functions of the coordinates, and they differ only slightly in the reaction zone of the flame. In the strong recuperation regime, the temperature of the shell is significantly higher than that of the core and has a sharp peak in the reaction zone with the maximum value exceeding the adiabatic flame temperature for pure energetic material. It is found that the highest level of flame acceleration in the composite material can be attained in the strong recuperation regime. The competition of these flame propagation regimes may lead to the coexistence of multiple combustion waves travelling with different velocities. The stability is investigated of combustion waves in the practically important strong recuperation regime.  相似文献   

12.
《Ultrasonics》2005,43(2):101-111
A theory of propagation of stress waves in diluted and densified suspensions is developed to make the theoretical basis for analysis of ultrasonic waves through these media. The formulae for the phase velocity and the attenuation coefficient are determined as the function of wave frequency and the suspension structure parameter, which is the volume or mass fraction of the solid phase. These formulae can be use, after suitable calibration, for determination of the solid volume fraction in diluted suspensions, and the solid mass fraction or the water content in densified suspensions, that is, parameters that characterize the structure of a suspension. These structure parameters can be determined by measuring the transition time of ultrasonic wave through a given distance of suspension. The phase velocity dispersion curves and the attenuation coefficients determined theoretically and experimentally are plotted as a function of the volume fraction of the solid phase for dilute suspension, or the solid mass fraction for densified suspension.  相似文献   

13.
Jan Kowalski S 《Ultrasonics》2004,43(2):101-111
A theory of propagation of stress waves in diluted and densified suspensions is developed to make the theoretical basis for analysis of ultrasonic waves through these media. The formulae for the phase velocity and the attenuation coefficient are determined as the function of wave frequency and the suspension structure parameter, which is the volume or mass fraction of the solid phase. These formulae can be use, after suitable calibration, for determination of the solid volume fraction in diluted suspensions, and the solid mass fraction or the water content in densified suspensions, that is, parameters that characterize the structure of a suspension. These structure parameters can be determined by measuring the transition time of ultrasonic wave through a given distance of suspension. The phase velocity dispersion curves and the attenuation coefficients determined theoretically and experimentally are plotted as a function of the volume fraction of the solid phase for dilute suspension, or the solid mass fraction for densified suspension.  相似文献   

14.
This paper presents a new ray theory for the propagation of sound waves in nonuniformly moving media. It is found that the ray equations in weakly inhomogeneous and slowly moving media are analogous to the equations of motion of charged particles in nonuniform electric and magnetic fields. The adiabatic approximation is used to study the problem of the propagation of sound rays in a model of near-ocean-bottom waveguide with horizontal flow and slowly varying parameters along the direction of propagation of the wave. A general formula is derived that describes the transverse displacement of the trajectory of the ray relative to the direction of propagation of the wave.  相似文献   

15.
Biot's theory of wave propagation in porous media includes a characteristic frequency which is used to distinguish the low-frequency from the high-frequency range. Its determination is based on an investigation of fluid flow through different pore geometries on a smaller scale and a subsequent upscaling process. This idea is limited due to the assumptions made on the smaller scale. It can be enhanced for a general two-phase system by three properties: Inertia of the solid, elasticity of the solid, and frequency dependent corrections of the momentum exchange. They become important for highly porous media with liquids.  相似文献   

16.
17.
A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.  相似文献   

18.
Nonstationary theory of two-velocity continuum describing the propagation of acoustic waves inmicrofractured porousmedia is based on general physical principles: the first law of thermodynamics, the conservation laws, the kinematic relationships in the metric tensor and the Galilean principle of relativity. As a physical application, the theory of the Stoneley wave in microfractured porous media is developed. The simulation results are compared with the results of physical measurement of the Stoneley wave parameters in the boreholes. It is shown that an additional fluid transport through fractures makes it possible to satisfactorily correlate the experimental and theoretical data. In general, the developed theory is a nonlinear physical model of fluid dynamics in fractured porous media.  相似文献   

19.
In solid phase materials, differently from what happens in the fluid phase, elastic waves propagate both through longitudinal and transverse waves. From the speed of propagation of longitudinal and transverse waves, it is possible to evaluate important elastic properties of the solids under study, namely the Young’s modulus, the Poisson’s coefficient, the bulk modulus and the shear modulus. This work suggests an accurate method for measuring wave propagation speeds in homogeneous and non-homogeneous materials with the purpose to evaluate their mechanical properties and the associated uncertainty.First of all, to assess the performance of the proposed methodology, based on the “pulse-echo” technique, in terms of accuracy and precision, measurements of wave propagation speeds have been carried out, in atmospheric conditions, in well-known homogeneous and isotropic materials, such as copper, aluminum, stainless steel and also polymethyl methacrylate (Plexiglas®), Teflon® and optical glass BK7. These results were compared with the values reported in literature (if present), showing how published speed of sound data are very disperse and not so reliable owing to the lack of a precise uncertainty evaluation and of the temperature value associated to the measurement. Then, the same experimental apparatus was used for measuring speed of sound as a function of temperature (from 274.15 to 313.15 K) for 304 stainless steel and oxygen free copper, showing a good accuracy of the results also for temperature conditions far from ambient. Finally, the same procedure was applied to a non-homogeneous solid, obtaining some very preliminary results in typical mediterranean building material, as Carrara marble.  相似文献   

20.
首先利用直接微扰方法,确定了孤立波的放大或衰减与孤立波的初始幅度以及介质的结构参数之间的关系.然后利用线性化技术构造出一种四阶精度的差分格式,并对孤立波在细观结构固体层中传播及不同幅度的孤立波的相互作用进行了数值模拟,从而得到在适当条件下细观结构固体层中孤立波传播时可以衰减、放大也可以稳定传播,且相互作用不影响它们这种传播特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号