首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Rapid and accurate detection of genetic mutations based on nanotechnology would provide substantial advances in detection of polycystic kidney disease (PKD), a disease whose current methods of detection are cumbersome due to the large size and duplication of the mutated gene. In this study, a nanotechnology-based DNA assay was developed for detection of SNPs (single nucleotide polymorphisms) in a feline autosomal dominant PKD (ADPKD) model which can readily be adapted to diagnosis of human ADPKD type 1. Europium and terbium phosphors were doped into gadolinium crystal hosts with a magnetic core, providing stable luminescence and the possibility of magnetic manipulations in a solution-based assay. A hybridization-in-solution DNA assay was optimized for feline PKD gene SNP detection using genomic DNA extracted from feline kidney tissue and blood. This assay showed a substantial differentiation between PKD and control specimens. The nanotechnology-based DNA assay is attractive from the viewpoint of rapid availability, simple methodology, and cost reduction for clinical use to detect mutations involved in human ADPKD and other genetic diseases. Figure Schematic diagram of PKD (Polycystic Kidney Disease) SNPs detection assay using feline genomic DNA in magnetic/luminescent nanoparticle-based DNA hybridization  相似文献   

2.
Single-nucleotide polymorphisms (SNPs) emerge as a fundamental tool in personalized medicine due to their association with drug responses or disease predisposition. Single-base extension (SBE) is a common method for characterizing known SNPs, but involves complicated procedures or requires costly analytical instruments. Here, we describe a novel SNP genotyping based on SBE and enzyme-linked immunosorbent assay (ELISA). During the SBE, the 5′ end fluorescein isothiocyanate-labeled allele-specific primer will extend with biotinylated dideoxynucleotides which are complementary to the SNP sites. The extension product will then be captured by streptavidin-coated nanoparticle and develop blue color in the ELISA assay. We validated this method by detecting SNPs for TP53 gene codon 273 from 68 individuals and the data were 100% in concordant with DNA sequencing. Thus, SBE and ELISA-based SNPs assay is a simple and accurate method for SNP genotyping.  相似文献   

3.
A major focus of current efforts in genomics is to elucidate the genetic variations extent within the human population, and to study the effects of these variations upon the human system. The most common type of genetic variations are the single nucleotide polymorphisms (SNPs), which occur every 500-1000 nt in the genome. Large-scale population association studies to study the biological or medical significance of such variations may require the analysis of hundreds of thousands of SNPs on thousands of individuals. We are pursuing development of an approach to large-scale SNP analysis that combines the specificity of invasive cleavage reactions with the parallelism of high density DNA arrays. A surface-immobilized probe oligonucleotide is specifically cleaved in the presence of a complementary target sequence in unamplified human genomic DNA, yielding a 5' phosphate group. High sensitivity detection of this reaction product on the surface is achieved by the use of rolling circle amplification, with an approximate concentration detection limit of 10 fM target DNA. This combination of very specific surface cleavage and highly sensitive surface detection will make possible the rapid and parallel analysis of genetic variations across large populations.  相似文献   

4.
Genome-wide association analysis involved many single-nucleotide polymorphisms (SNPs) data is challenging mathematically and computationally. Hence, we propose the odds ratio-based discrete binary particle swarm optimization (OR-DBPSO) method that uses the OR as a new quantitative measure of disease risk among many SNP combinations with genotypes called "SNP barcode". DBPSO are applied to generate SNP barcode, which computes the maximal difference of occurrence between the case and control groups, to predict disease susceptibility such as osteoporosis. Different SNP barcode patterns may occur several times in either low or high bone mineral density (BMD) groups. Our results showed that a DBPSO can effectively identify a specific SNP barcode with an optimized fitness value. SNP barcodes with a low fitness value will naturally be discarded from the population. A representative SNP barcode with a variable number of SNPs is processed to OR analysis to determine the maximum difference between the low and high BMD groups in statistics manner. Therefore, this paper introduces a powerful procedure to analyze disease-associated SNP-SNP interaction in genome-wide genes.  相似文献   

5.
We used cotton thread as substrate to develop a novel room temperature DNA detection device for low-cost, sensitive and rapid detection of a human genetic disease, hereditary tyrosinemia type I related DNA sequences. A novel adenosine based molecular beacon (ABMB) probe modified on gold nanoparticle was used as reporter probe. In the presence of coralyne, a small molecule which can react with adenosines, the ABMB would form a hairpin structure just like traditional molecular beacon used extensively. In the presence of target DNA sequences, the hairpin structure of ABMB modified on gold nanoparticles will be opened and the biotin group modified at one end of the DNA probes will be released and react with the streptavidin immobilized on the test zone of the cotton thread. The response of the thread based DNA test device is linear over the range of 2.5–100 nM complementary DNA. The ability of our developed device for discriminating the single base mismatched DNA related to a human genetic disease, hereditary tyrosinemia type I, was improved comparing with previous report. It is worth mentioning that the whole assay procedure for DNA test is performed under room temperature which simplified the assay procedures greatly.  相似文献   

6.
Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at ∼0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcolohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biometarials for various analytical and pharmaceutical applications. Figure The electrochemical method for SNP detection using PNA probes and chitosan nanoparticles takes advantage of the significant structural and physicochemical differences between PNA/DNA and DNA/DNA duplexes. Single-stranded DNA specific enzymes selectively choose these SNP sites and hydrolyze the DNA molecules on gold electrode (AuE) surface. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
A major challenge in the area of DNA detection is the development of rapid methods that do not require polymerase chain reaction (PCR) amplification of the genetic sample. The PCR amplification step increases the cost of the assay, the complexity of the detection, and the quantity of DNA required for the assay. In this context, methods that are able to perform DNA analyses with ultrasensitivity have recently been investigated with the aim of developing new PCR-free detection protocols. Functionalized gold nanoparticles have played a central role in the development of such methods. Here, possibilities offered by functionalized gold nanoparticle in the ultrasensitive detection of DNA are discussed. The different functionalization protocols available for gold nanoparticles and the principal DNA detection methods that are able to detect DNA at the femtomolar to attomolar level are presented.  相似文献   

8.
Single nucleotide polymorphisms (SNPs) are currently being mapped and databased at a remarkable pace, providing a viable means for understanding disease susceptibility, differential drug response and human evolution. Consequently, there is an increasing demand for SNP genotyping technologies that are simple, rapid, cost effective and readily amenable to automation for high-throughput analyses. In this study, we improved the Survivor Assay, a SNP detection method based on electrospray ionization mass spectrometry (ESI-MS), with several developments. One improvement is the development of a one-well assay, requiring no off-line purification of the polymerase chain reaction product, achieved by simple addition of reagent solution into a single well. Another is the on-line separation of magnesium and dideoxynucleotides using an in-house made monolithic metal chelating column, eliminating any off-line sample preparation prior to mass spectrometric analysis. Here the Survivor Assay is extended from a proof-of-principle concept to a validated method by genotyping six SNPs from five different regions of human genomic DNA in 55 individual samples with 100% accuracy. This improved Survivor Assay eliminates the tedious and time-consuming steps of sample preparation, minimizes sample handing and offers a high-throughput analysis of SNPs by ESI-MS. The current combined preparation and analysis time is 2 min per sample. The simplicity of this method has potential for full automation and parallel chromatography and, thus, reduced analysis time. In addition, we have adapted the Survivor Assay for quantitative SNP analysis in pooled DNA samples. The capabilities and sensitivity of this approach were evaluated. We demonstrate that an allele occurring at a frequency of 2% can consistently be quantitated.  相似文献   

9.
Zha L  Yun L  Chen P  Luo H  Yan J  Hou Y 《Electrophoresis》2012,33(5):841-848
Tri-allelic single nucleotide polymorphisms (SNPs) are potential forensic markers for DNA analysis. Currently, only a limited number of tri-allelic SNP loci have been proved to be fit for forensic application. In this study, we aimed to develop an effective method to select and genotype tri-allelic SNPs based on both Pyrosequencing (PSQ) and the SNaPshot methods. 50 candidate SNPs were chosen from NCBI's dbSNP database and were analyzed by PSQ. The results revealed that 20 SNPs were tri-allelic and were located on 16 autosomal chromosomes. Then 20 SNP loci were combined in one multiplex polymerase chain reaction to develop a single base extension (SBE)-based SNP-typing assay. A total of 100 unrelated Chinese individuals were genotyped by this assay and allele frequencies were estimated. The total discrimination power was 0.999999999975 and the cumulative probability of exclusion was 0.9937. These data demonstrated that the strategy is a rapid and effective method for seeking and typing tri-allelic SNPs. In addition, the 20 tri-allelic SNP multiplex typing assay may be used to supplement paternity testing and human identification.  相似文献   

10.
《Electrophoresis》2017,38(8):1154-1162
Nonbinary single‐nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent‐labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis.  相似文献   

11.
The structure-specific invasive cleavage reaction is a useful means for sensitive and specific detection of single nucleotide polymorphisms, or SNPs, directly from genomic DNA without a need for prior target amplification. A new approach integrating this invasive cleavage assay and surface DNA array technology has been developed for potentially large-scale SNP scoring in a parallel format. Two surface invasive cleavage reaction strategies were designed and implemented for a model SNP system in codon 158 of the human ApoE gene. The upstream oligonucleotide, which is required for the invasive cleavage reaction, is either co-immobilized on the surface along with the probe oligonucleotide or alternatively added in solution. The ability of this approach to unambiguously discriminate a single base difference was demonstrated using PCR-amplified human genomic DNA. A theoretical model relating the surface fluorescence intensity to the progress of the invasive cleavage reaction was developed and agreed well with experimental results.  相似文献   

12.
We present a silica nanoparticle (SNP) functionalized with polyphosphate (polyP) that accelerates the natural clotting process of the body. SNPs initiate the contact pathway of the blood‐clotting system; short‐chain polyP accelerates the common pathway by the rapid formation of thrombin, which enhances the overall blood‐clotting system, both by accelerating fibrin generation and by facilitating the regulatory anticoagulation mechanisms essential for hemostasis. Analysis of the clotting properties of bare SNPs, bare polyP, and polyP‐functionalized SNPs in plasma demonstrated that the attachment of polyP to SNPs to form polyP‐SNPs creates a substantially enhanced synergistic effect that lowers clotting time and increases thrombin production at low concentrations. PolyP‐SNP even retains its clotting function at ambient temperature. The polyP‐SNP system has the potential to significantly improve trauma‐treatment protocols and outcomes in hospital and prehospital settings.  相似文献   

13.
After completion of the human genome sequence the search for differences among individual genomes has become the centre of focus for geneticists. Two different types of polymorphism—single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs)—are major sources of genetic diversity and are of widespread use in genetic analysis. A plethora of genotyping techniques have been developed, and mass spectrometry (MS) is among the most widely used analytical platforms. The most striking advantage of mass spectrometric genotyping assays over others is the use of the measured molecular mass information for allele calling. The molecular mass is less error-prone than other sequence-specific parameters, including migration times, retention times, or hybridization yields, as it represents an intrinsic property of a nucleic acid molecule that is directly related to its nucleotide composition. Mass spectrometric assays can roughly be divided into two major groups—matrix-assisted laser desorption/ionization (MALDI)-based and electrospray ionization (ESI)-based assays. An important subdivision of ESI-based genotyping methods are approaches that originate from the hyphenation of liquid chromatography (LC) to MS. The principles of these three classes of mass spectrometric genotyping techniques are summarized in this review. Possibilities and limitations are critically discussed to assist scientists, especially non-experts in MS, in choosing the appropriate mass spectrometric assay for genotyping a genetic marker of interest. Figure Comparison of the principle workflows applied for the characterization of genetic markers by MALDI–MS, ESI–MS, and LC–MS  相似文献   

14.
Single nucleotide polymorphisms (SNPs) are the most abundant variations in the human genome and have become the primary markers for genetic studies for mapping and identifying susceptible genes for complex diseases. Methods that genotype SNPs quickly and economically are of high values for these studies because they require a large amount of genotyping. Fluorescence polarization (FP) is a robust technique that can detect products without separation and purification and it has been applied for SNP genotyping. In this article the applications of FP in SNP genotyping are reviewed and one of the methods, the FP-TDI assay, is discussed in details. It is hoped that readers could get useful information for the applications of FP in SNP genotyping and some insights of the FP-TDI assay.  相似文献   

15.
We reported here for the first time on the use of cotton thread combined with novel gold nanoparticle trimer reporter probe for low-cost, sensitive and rapid detection of a lung cancer related biomarker, human ferritin. A model system comprising ferritin as an analyte and a pair of monoclonal antibodies was used to demonstrate the proof-of-concept on the dry-reagent natural cotton thread immunoassay device. Results indicated that the using of novel gold nanoparticle trimer reporter probe greatly improved the sensitivity comparing with traditional gold nanoparticle reporter probe on the cotton thread immunoassay device. The assay avoids multiple incubation and washing steps performed in most conventional protein analyses. Although qualitative tests are realized by observing the color change of the test zone, quantitative data are obtained by recording the optical responses of the test zone with a commercial scanner and corresponding analysis software. Under optimal conditions, the cotton thread immunoassay device was capable of measuring 10 ng/mL human ferritin under room temperature which is sensitive enough for clinical diagnosis. Moreover, the sample solution employed in the assays is just 8 μL, which is much less than traditional lateral flow strip based biosensors.  相似文献   

16.
The ability to characterize SNPs is an important aspect of many clinical diagnostic, genetic and evolutionary studies. Here, we designed a multiplexed SNP genotyping method to survey a large number of phylogenetically informative SNPs within the genome of the bacterium Bacillus anthracis. This novel method, CE universal tail mismatch amplification mutation assay (CUMA), allows for PCR multiplexing and automatic scoring of SNP genotypes, thus providing a rapid, economical and higher throughput alternative to more expensive SNP genotyping techniques. CUMA delivered accurate B. anthracis SNP genotyping results and, when multiplexed, saved reagent costs by more than 80% compared with TaqMan real-time PCR. When real-time PCR technology and instrumentation is unavailable or the reagents are cost-prohibitive, CUMA is a powerful alternative for SNP genotyping.  相似文献   

17.
Biomarker discovery is a challenging task of bioinformatics especially when targeting high dimensional problems such as SNP (single nucleotide polymorphism) datasets. Various types of feature selection methods can be applied to accomplish this task. Typically, using features versus class labels of samples in the training dataset, these methods aim at selecting feature subsets with maximal classification accuracies. Although finding such class-discriminative features is crucial, selection of relevant SNPs for maximizing other properties that exist in the nature of population genetics such as the correlation between genetic diversity and geographical distance of ethnic groups can also be equally important. In this work, a methodology using a multi objective optimization technique called Pareto Optimal is utilized for selecting SNP subsets offering both high classification accuracy and correlation between genomic and geographical distances. In this method, discriminatory power of an SNP is determined using mutual information and its contribution to the genomic–geographical correlation is estimated using its loadings on principal components. Combining these objectives, the proposed method identifies SNP subsets that can better discriminate ethnic groups than those obtained with sole mutual information and yield higher correlation than those obtained with sole principal components on the Human Genome Diversity Project (HGDP) SNP dataset.  相似文献   

18.
Conventional methods for detecting single-nucleotide polymorphisms (SNPs), the most common form of genetic variation in human beings, are mostly limited by their analysis time and throughputs. In contrast, advances in microfabrication technology have led to the development of miniaturized platforms that can potentially provide rapid high-throughput analysis at small sample volumes. This review highlights some of the recent developments in the miniaturization of SNP detection platforms, including microarray-based, bead-based microfluidic and microelectrophoresis-based platforms. Particular attention is paid to their ease of fabrication, analysis time, and level of throughput.  相似文献   

19.
A microfluidic approach for rapid bioluminescent real-time detection of single nucleotide polymorphism (SNP) is presented. The method is based on single-step primer extension using pyrosequencing chemistry to monitor nucleotide incorporations in real-time. The method takes advantage of the fact that the reaction kinetics differ between matched and mismatched primer-template configurations. We show here that monitoring the initial reaction in real time accurately scores SNPs by comparing the initial reaction kinetics between matched and mismatched configurations. Thus, no additional treatment is required to improve the sequence specificity of the extension, which has been the case for many allele-specific extension assays. The microfluidic approach was evaluated using four SNPs. Three of the SNPs included primer-template configurations that have been previously reported to be difficult to resolve by allele-specific primer extension. All SNPs investigated were successfully scored. Using the microfluidic device, the volume for the bioluminescent assay was reduced dramatically, thus offering a cost-effective and fast SNP analysis method.  相似文献   

20.
We report on a highly sensitive chemiluminescent (CL) biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H2O2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L-1 of target DNA.
Graphical Abstract
A sensitive chemiluminescent biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticle that were covered with a dendrimer was reported. The immobilization of dendrimer onto the gold nanoparticles enhances sensitivity and gives a detection limit of 6 fM of target DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号