首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
A new automated synthesis procedure of 1-H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO), a specific hypoxia imaging agent with great significances for the noninvasive, dynamic hypoxia evaluation of cancer, was developed by modifying Explora FDG4 module, a commercial [18F]FDG production system, in this study. Its radiochemical synthesis was carried out via two sequent reaction steps, i.e. the nucleophilic displacement of labeling precursor 1-(2′-nitro-1′-imidazolyl)-2-O-tetrahydropyranyl-3-O-tosyl-propanediol (NITTP) with activated 18F- ion at 100 °C for 8 minutes, and the following hydrolysis with 1M HCl at 100 °C for 5 minutes and neutralization with 1M NaOH. Two-pot reaction with two independent separations was adopted to assure the good separation of final product via solid phase extraction (SPE) based upon combined Sep-pak cartridges instead of high performance liquid chromatography (HPLC). This fast, reliable preparation route of 18F-FMISO could complete within 50 minutes with about 55% of high radiochemical yield (with decay correction) and more than 98% of good radiochemical purity. The modified module could perform multiple runs of production of [18F]FMISO.  相似文献   

2.
The need of reliable production of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB), a versatile 18F-labeled prosthetic group for protein labeling, has increased dramatically due to the easy availability of proteins or their engineered derivatives for targeted molecular imaging. A module-assisted radiosynthesis of [18F]SFB was developed using a three-step, one-pot procedure and ethyl 4-(trimethylammonium)benzoate triflate (1) as the starting material. The radiochemical transformations were carried out in a general-purpose, custom-made module and streamlined by an anhydrous deprotection strategy using t-BuOK/DMSO. After HPLC-purification, [18F]SFB was synthesized in radiochemical yields of 20–30% (n > 10, not decay-corrected) and excellent radiochemical and chemical purities (>98%). The total synthesis and purification time required is ~90 min. Using the purified [18F]SFB, three 18F-labeled proteins, bovine serum albumin (BSA), chicken egg albumin (CEA) and transferrin, were synthesized in yields of 61.0–79.5%. The 18F-Annexin V for apoptosis imaging was also produced in 5% radiolabeling yield and >95% radiochemical purity.  相似文献   

3.
Summary To control virtually the toxic compounds and to improve quality control of the solution of 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), the products of its autoradiolysis were analyzed by high-performance liquid chromatography with electrospray mass spectrometric and radiometric detectors (HPLC/MS/RAD), thin layer chromatography on TLC silica plate and HPTLC on amino modified silica plate. Except Kryptofix2.2.2, glucose and fluoride anion, no by-products and impurities were observed by LC/MS analysis of fresh 2-[18F]FDG samples. The analysis performed in the time interval of 6 to 48 hours after the end of 2-[18F]FDG synthesis indicated that the activity of the autoradiolysis products separated by HPLC did not exceed 1.3%. As the main autoradiolysis products of 3.3 . 10-5 to 4.4 . 10-5M 2-[18F]FDG solution of original specific activity 0.5-1.5 GBq . cm-3 were established: arabinose - 2.8 μM (G= 0.07/100 eV), gluconic and glucuronic acids 1.8-0.5 μM (G =0.01-0.05/100 eV), arabinose and araburonic acids occurred under 0.5 μM concentration at residual glucose contents about 0.14 mM. Radiation chemical yields of active products were calculated from molar activity of 2-[18F]FDG and the percentage of their activity: 0.5% radiochemical yield of 2-[18F]fluoroglucuronic acid corresponds to the G = 0.004/100 eV and 0.3% yield of 2-[18F]fluorogluconic acid issues G = 0.003/100 eV.  相似文献   

4.
A number of Cr(CO)3 complexes of bridgehead-substituted phenylbicyclo[2.2.2]octanes and (m- and p-)fluoropheylbicyclo[2.2.2]octanes have been synthesized and their 13C and 19F NMR spectra have been recorded, respectively. The substituent chemical shifts (SCS) of these stereochemically well-defined model systems permit an unambiguous evaluation of polar factors governing 13C and 19F SCS in arene-Cr(CO)3 complexes. The dual nature of 19F NMR polar field effects is reaffirmed and the coefficient (A) of the Buckingham equation for linear electric field effects on C(sp2)F bonds in fluoroarene-Cr(CO)3 complexes has been calculated. A re-examination and re-interpretation of the 19F chemical shifts of m- and p-substituted fluorophenyltricarbonylchromium derivatives is also reported. New substituent parameters (σI and σoR) for C6H5 · Cr(CO)3 as a substituent in the neutral ground state arepresented.  相似文献   

5.
Due to favourable in vivo characteristics, its high specificity and the longer half-life of 18F (109.8 min) allowing for remote-site delivery, O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) has gained increased importance for molecular imaging of cerebral tumors. Consequently, the development of simple and efficient production strategies for [18F]FET could be an important step to further improve the cost-effective availability of [18F]FET in the clinical environment. In the present study [18F]FET was synthesized via direct nucleophilic synthesis using an earlier developed chiral precursor, the NiII complex of an alkylated (S)-tyrosine Schiff base, Ni-(S)-BPB-(S)-Tyr-OCH2CH2OTs. The purification method has been developed via solid phase extraction thereby omitting cumbersome HPLC purification. The suggested SPE purification using combination of reverse phase and strong cation exchange cartridges provided [18F]FET in high chemical, radiochemical and enantiomeric purity and 35 % radiochemical yield (decay-corrected, 45 min synthesis time). The method was successfully automated using a commercially available synthesis module, Scintomics Hotboxone. Based on the current results, the proposed production route appears to be well suited for transfer into an automated cassette-type radiosynthesizers without using HPLC.  相似文献   

6.
(S)-4-Chloro-2-fluorophenylalanine and (S)-(α-methy)-4-chloro-2-fluorophenylalanine were synthesized and labeled with no carrier added (n.c.a.) fluorine-18 through a radiochemical synthesis relying on the highly enantioselective reaction between 4-chloro-2-[18F]fluorobenzyl iodide and the lithium enolate of (2S)-1-(tert-butyloxycarbonyl)-2-(tert-butyl)-3-methyl-1,3-imidazolidine-4-one for (S)-4-chloro-2-[18F]fluorophenylalanine and (2S,5S)-1-(tert-butyloxycarbonyl)-2-(tert-butyl)-3,5-dimethyl-1,3-imidazolidine-4-one for (S)-(α-methyl) -4-chloro-2-[18F] fluorophenylalanine. Quantities of about 20–25 mCi were obtained at the end of sy nthesi s, ready for injection after hydrolysis and high performance liquid chromatography (HPLC) purification, with a radiochemical yield of 17%–20% corrected to the end of bombardment after a total synthesis time of 90–105 min from [18F] fluoride. The enantiomeric excesses were shown to be 97% or more for both molecules without chiral separation and the radiochemical and chemical purities were 98% or better.  相似文献   

7.

The goal of this work was to present two high-performance liquid chromatography (HPLC) method that could be applied for the determination of the total radioactive purity of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET). The separation of [18F]fluoride ions, [18F]FET and [18F]FET intermediate was accomplished on LiChrosper RP-18, 250?×?4 mm, 5 µm (Merck) analytical column. For mobile phase 10 mM potassium dihydrogen phosphate buffer at pH7 (A) and acetonitrile (B) was used: 0–2 min: 15% B; 2–12 min: 85% B; 12–15 min: 15% B, respectively. Analysis of [18F]FDG was performed using LiChrosper 100 NH2, 250?×?4.5 mm, 5 µm (Merck) analytical column. The initial mobile phase composition was 10 mM KH2PO4 buffer (pH7) and acetonitrile (15:85, v/v) and the acetonitrile ratio was decreased to 15% at 2 min after the sample injection and held for 5 min. Complete elution of [18F]fluoride ions from stationary phases could be achieved by adding 10 mg/mL K[19F]F to radioactive samples in a ratio 1:1 during the sample preparation. Recovery of [18F]fluoride ions ranged from 99.5 to 100.6%. The validation of the developed methods showed good results for linearity (r2?=?0.9981–0.9996), specificity (RS?=?3.7–10.2), repeatability (%Area RSD%?=?1.2–4.3%) and limit of quantitation (LOQ?=?1.6–4.5 kBq). During the cross-validation similar radiochemical purity values were obtained by the novel HPLC methods and thin layer chromatography performed according to the recommendations of the Ph. Eur. monographs.

  相似文献   

8.
As degradation product of Antineoplaston A10 in vivo, phenylacetyl glutamine showed antitumor activities. According to literatures, we designed and radiosynthesized a phenylacetyl glutamine derivative, which was achieved under a mild reaction condition. Evaluations in vitro and in vivo were performed on tumor bearing mice. Excitingly, the radiochemical purity of (S)-2-((S)-2-(4-(3-fluoropropyl)benzamido)-3-phenylpropanamido)pentanedioic acid ([18F]FBPPA) was 98%, and besides the best radiochemical yield was up to 46%. T/Bl (Tumor/Blood) and T/M (Tumor/Muscle) ratios of [18F]FBPPA at 60 min post injection were 2.33 and 3.51. Meanwhile, it showed satisfied stability in vitro and in vivo, compared with 2-[18F]fluorodeoxyglucose ([18F]FDG). Although [18F]FBPPA deserved further studies to make optimizations on its structure, the results revealed it might become a potential PET imaging agent for detecting tumors.  相似文献   

9.
This study describes a convenient protocol for the synthesis of (2S)-tert-butyl 2-(2-bromopropanamido)-5-oxo-5-(tritylamino)pentanoate, which can serve as an appropriate precursor of (2S)-5-amino-2-(2-[18F]fluoropropanamido)-5-oxopentanoic acid (N-(2-[18F]fluoropropionyl)-L-glutamine, [18F]FPGLN) for tumor positron emission tomography imaging. Five-step synthesis starting from L-glutamine provided the desired precursor with high yields. In addition, a simple method for the preparation of [18F]FPGLN from this easily available precursor was developed using a two-step 18F-labeling strategy.  相似文献   

10.
The reaction of cis-[Pt(15NH3)2(H2O) 2] 2+ (3) with N-acetylcysteine [H3accys] was investigated in aqueous solution. In this reaction, the ammine in the platinum complex formed was liberated. A mono-dentate sulfur-boundplatinum(II) product cis-[Pt(15NH3)2(H2O)(H2accys-S)]+ (7) and six-membered che-late ring complex cis-[Pt(15NH3)2 (Haccys-S,O)] (8) were formed in solution. The dinuclear sulfur-bridged complex 9, giving a broad peak in 15N NMR, was also observed, but only present in very tiny amounts. The mass spectrometry (ES-MS) was undertaken from this re action, and the product detected was only the dinuclear sulfur bridged platinum species and species related to it by ammine loss.  相似文献   

11.
The compound 3-{[4-(4-[18F]fluorophenyl)methyl]piperazin-1-yl}-methyl-1H-pyrrolo[2,3-b]pyridine ([18F]3), which is an analogue of L-745,870 binding D4 This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A potential dopamine D4 receptor ligand, 1-(4-(4-(4-fluorobenzyl)-1-piperazinyl)butyl)indolin-2-one (4) was synthesized through a four-step process and its affinity and selectivity for dopamine D2-like receptors was determined through in vitro receptor binding assay. [18F]4 was prepared using a one-pot two-step method with total radiochemical yield 21.2 % (decay-corrected). The molar radioactivity was around 135 GBq/μmol and the radiochemical purity was greater than 95.5 %. The partition coefficient (Log P) of [18F]4 was determined to be 2.10 ± 0.30 through octanol experiment. The in vivo biodistribution and the competitive distribution of [18F]4 in rat exposed that the tracer passes through blood–brain-barrier (BBB) and may specifically bind to D4 receptor. Metabolite analysis revealed that there was no metabolism of [18F]4 in brain. Conclusively, these preliminary results demonstrated that [18F]4 shows promises as a radioligand for the in vivo study of dopamine D4 receptor.  相似文献   

13.
The preparation of 10-(2-[18F]fluoroethoxy)-20(S)-camptothecin, a potential positron emission tomography tracer for the imaging of topoisomerase I in cancers, is described. 10-(2-[18F]Fluoroethoxy)-20(S)-camptothecin was synthesized by the [18F]fluoroalkylation of the corresponding hydroxy precursor molecule with 2-[18F]fluoroethyl bromide ([18F]FEtBr) in dimethylsulfoxide (DMSO) at 55 °C for 20 min; this was followed by purification using high performance liquid chromatography (HPLC) with a total preparation time of 60 min. The overall radiochemical yield was approximately 5.4–12 % (uncorrected), and the radiochemical purity was above 96 %.  相似文献   

14.
For detection of hypoxic tumor tissue, all radiotracers synthesized until now, are based on the concept that cellular uptake is being controlled by diffusion. As a new approach, we chose the concept to have the tracer hypothetically transported into the cells by well known carrier systems like the amino acid transporters. For this purpose, radiosynthesis of O-[2-[18F]fluoro-3-(2-nitro-1H-imidazole-1yl)propyl]tyrosine ([18F]FNT]) was carried out from methyl 2-(benzyloxycarbonyl)-3-(4-3-(2-nitro-1H-imidazol-1-yl)-2-(tosyloxy)propoxy) phenyl)propanoate via no-carrier-added nucleophilic aliphatic substitution. After labelling, 81 ± 0.9% of labelled intermediate i.e. methyl 2-(benzyloxycarbonyl)-3-(4-(2-[18F]fluoro-3-(2-nitro-1H-imidazole-1-yl)propoxy) phenyl)propanoate was obtained at 140 °C. At the end of radiosynthesis, [18F]FNT was obtained in an overall radiochemical yield of 40 ± 0.9% (not decay corrected) within 90 min in a radiochemical purity of >98% in a formulation ready for application in the clinical studies for PET imaging of hypoxia.  相似文献   

15.
Summary A procedure for labeling of a fullerene derivative 1-[N',N'-bis(2-chloroethyl)-4-aminophenyl]-N-methyl-fullereno-C60-[1,9-c]pyrrolidine (C60-C13H18N2Cl2) with 125I is reported. The compound was first iodinated with a large excess of iodine monochloride and then radiolabeled by isotopic exchange with Na125I in a toluene-water two-phase system. The dependence of the radiolabeling yield on the reaction temperature and exchange time was examined. The radiolabeling yield of the compound was as high as 94% after heating for 2 hours at 130 °C.  相似文献   

16.
A novel technique is described for measuring the site selectivity of methods for labelling the major CFC-alternative, 1,1,1,2-tetrafluoroethane (HFA 134a), with fluorine-18 (t1/2 = 109.7 min). The carbon–carbon bond in radiofluorinated HFA 134a is broken in the ion source of an isotope separator. Radioactivity associated with the ion beam of the [CF2 18F]+. fragment (m/z = 68) is collected, measured and divided by the integrated mass of the simultaneously collected ion beam for the [CF3]+. fragment (m/z = 69) to give the ‘specific radioactivity’ (in nCi nmol–1) of the radiolabel in the 1-position. Similarly, the ‘specific radioactivity’ of the radiolabel in the 2-position is calculated from the measured radioactivity of the ion beam from the [CH2 18F]+. fragment (m/z = 32) and the integrated mass of the simultaneously collected ion beam from the [CH2F]+. fragment (m/z = 33). The selectivity of the labelling procedure for a particular position is then given by the decay-corrected ratio of specific radioactivity at that position to the sum of specific radioactivities. The labelling of HFA 134a by the reaction of [18F] fluoride with trifluoroethylene was found to have 97% selectivity for the CF3 group, whereas labelling by the reaction of [18F] fluoride with 2,2,2-trifluoroethyl p-toluenesulphonate was found to have 91% selectivity for the CH2F group. This information is of value for tracer studies of the fate of HFA 134a in man following its inhalation as a drug propellant. The described technique is of potentially wider value for determining the position of fluorine-18 in labelled polyfluorinated molecules.  相似文献   

17.
A number of bridgehead metalloidal-substituted phenylbicyclo[2.2.2]octyl and (m- and p-)fluorophenylbicyclo[2.2.2]octyl derivatives have been synthesized and their 13C and 19F NMR spectra have been recorded. The appropriate 13C and 19F substituent chemical shifts of these stereochemically well-defined model systems, together with the known polar susceptibility parameters, provide a definitive scale of polar field-inductive parameters (σ1 values) for a representative array of metalloidal substituents attached to an sp3 hybridized carbon center. The implication of these results with respect to the physical interpretation of σ1 parameters is discussed. In addition, the previously reported results for alkyl groups in these systems have been re-evaluated in terms of possible through-bond effects involving orbitals of π symmetry of the bicyclo[2.2.2]- octane ring system. Factors determining α, β, γ and δ effects are briefly alluded to.  相似文献   

18.
The even-parity autoionizing resonance series 3p5np'[3/2]1,2, 3p5np'[1/2]1, and 3p5nf'[5/2]3 of Ar have been investigated exciting from the two metastable states 3p54s[3/2]2 and 3p54s'[1/2]0 in the photon energy range of 32500-35600 cm-1 with an experimental bandwidth of ~0.1 cm-1. The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes. New level energies, quantum defects, line profile index and resonance widths, resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis. The line profile index q and the resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n*. The line separation of the 3p5np' autoionizing resonances is discussed.  相似文献   

19.
《中国化学快报》2022,33(7):3543-3548
Racemic [18F]FBFP ([18F]1) proved to be a potent σ1 receptor radiotracer with superior imaging properties. The pure enantiomers of unlabeled compounds (S)- and (R)-1 and the corresponding iodonium ylide precursors were synthesized and characterized. The two enantiomers (S)-1 and (R)-1 exhibited comparable high affinity for σ1 receptors and selectivity over σ2 receptors. The Ca2+ fluorescence assay indicated that (R)-1 behaved as an antagonist and (S)-1 as an agonist for σ1 receptors. The 18F-labeled enantiomers (S)- and (R)-[18F]1 were obtained in >99% enantiomeric purity from the corresponding enantiopure iodonium ylide precursors with radiochemical yield of 24.4% ± 2.6% and molar activity of 86–214 GBq/µmol. In ICR mice both (S)- and (R)-[18F]1 displayed comparable high brain uptake, brain-to-blood ratio, in vivo stability and binding specificity in the brain and peripheral organs. In micro-positron emission tomography (PET) imaging studies in rats, (S)-[18F]1 exhibited faster clearance from the brain than (R)-[18F]1, indicating different brain kinetics of the two enantiomers. Both (S)- and (R)-[18F]1 warrant further evaluation in primates to translate a single enantiomer with more suitable kinetics for imaging the σ1 receptors in humans.  相似文献   

20.
6-[18F]Fluoro-L-Dopa (6-FDOPA) is the analogue of L-Dopa, the biosynthesis precursor for dopamine. As a PET tracer, it was widely applied for the presynaptic dopamine function studies in human brain. The application of a chiral phase-transfer-catalyst (PTC) in enantioselective synthesis of N.C.A. 6-[18F]Fluoro-L-Dopa has been developed recently. An improved procedure was described in this study. The labeling precursor (6-Trimethylammoniumveratraldehyde Triflate) and PTC (O-Allyl-N-(9)-anthracenylcinchonidinium Bromide) were synthesized. A successful synthesis route was developed for the preparation of 6-[18F]Fluoro-L-Dopa with high radiochemical yields (4-9%, decay uncorrected) and short synthesis time(80min). The radiochemical purity was over 99% and no D-isomer was detected by HPLC analysis using a chiral mobile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号