首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution infrared spectra (0.001 cm−1 FWHM) have been measured for mixtures of 1-chloro-1,1-difluoroethane in Ne, expanded in a supersonic planar jet. The ν6 fundamental, infrared active with a dominant parallel transition moment, exhibits a remarkable splitting of about 0.035 cm−1 for both 35Cl and 37Cl isotopomers. Several mechanisms of interaction of ν6 with states with high torsional excitation are critically examined to explain the observed effect. It is concluded that the observed torsional splitting patterns can be explained in terms of a torsional Coriolis interaction between ν6 and a highly excited torsional mode, 6ν18. A full numerical analysis, performed including a torsional Coriolis term in the Hamiltonian, shows that the interaction mechanism requires a torsional barrier height of about 1270 cm−1.  相似文献   

2.
The absorption spectrum of the ν2 fundamental band of the cis-conformer of the transient molecule HOPO, namely the terminal PO stretching mode, has been detected and measured using diode laser spectroscopy. The molecule was generated in a discharge flow system containing hydrogen and white phosphorus vapour (P4) and a trace of oxygen. The spectrum has the appearance of an a-type band of a near prolate asymmetric top. Above Ka = 5 the spectrum is perturbed and transitions terminating on these higher Ka levels were excluded from the fit. The vibrational frequency and rotational constants derived from the unperturbed parts of the spectrum are compatible with new high precision ab initio calculations reported here. A combined fit of the ν2 band and the ν4 band data, measured earlier, was carried out. The ν2 band origin was determined to be 1258.539525(32) cm−1, approximately 5.5 cm−1 higher than the matrix value.  相似文献   

3.
Rotationally resolved vibrational spectra of the three lowest frequency bands of the four-membered heterocycle azetidine (c-C3H6NH) have been collected with a resolution of 0.00096 cm−1 using the far infrared beamline at the Canadian Light Source synchrotron. The modes observed correspond principally to motions best described as: β-CH2 rock (ν14) at 736.701310(7) cm−1, ring deformation (ν15) at 648.116041(8) cm−1, and the ring puckering mode (ν16) at 207.727053(9) cm−1. A global fit of 14 276 rovibrational transitions from the three bands provided an accurate set of ground state spectroscopic constants as well as excited state parameters for each of the three vibrational modes. The ground state structure was determined to be that of the puckered conformer having the NH bond in an equatorial arrangement.  相似文献   

4.
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 800-1500 cm−1 spectral region. Five fundamental bands ν2(A1; 1391.9 cm−1), ν4(A1; 964.4 cm−1), ν5(A1; 894.6 cm−1), ν9(B1; 821.5 cm−1), and ν14(B2; 898.4 cm−1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant . The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

5.
The ν4 and the ν9 bands of CF2CH2 have been studied using coincidences with the 10.4 μm band of the CO2 laser and the 10.9 μm band of the N2O laser. These resonances have been analyzed, together with recent microwave results, to give the following vibration-rotation parameters and dipole moments in the ν4 and ν9 states
  相似文献   

6.
The diode laser absorption infrared spectrum of fluorobenzene has been recorded near 1230 cm−1 after cooling the molecules in a supersonic pulsed jet. Spectral lines have been assigned to the ν7a fundamental band. Transitions of J between 32 and 49 have been recorded, that show characteristic line groupings in the P branch. Analysis of the spectrum gives the vibrational band origin and rotational and centrifugal distortion constants of the molecule in the ν7a = 1 state.  相似文献   

7.
The Fourier transform gas-phase IR spectrum of 1,2,3-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 700-1100 cm−1 spectral region. Four fundamental bands ν6(A/; 1101.8 cm−1), ν7(A/; 1038.8 cm−1), ν9(A/, 858.9 cm−1), and ν13(A//; 746.2 cm−1) have been analyzed using the Watson model in A-reduction. Two additional bands, ν8 (A/; 894.6 cm−1) and ν12(A//; 881.2 cm−1) were assigned by their weak Q-branches. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. A number of weak global and local interactions are present in the bands. The resonances identified were qualitatively explained by Coriolis type perturbations with neighboring levels. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

8.
The P-H stretching bands ν1/ν5 and 2ν1/ν1+ν5 were recorded using a Bruker 120 HR interferometer with a resolution of 0.0042 and 0.0088 cm−1, respectively, and analyzed. From the fits 33 and 50, respectively, vibrational, rotational, centrifugal distortion, and resonance interaction parameters were obtained. These reproduce 668 and 497 rovibrational energies of the pairs of states ν1/ν5 and 2ν1/ν1+ν5 with experimental accuracies, rms=0.00016 and , respectively. “Local mode” behavior of the PH2 fragment is established and discussed in detail.  相似文献   

9.
The 71 and 91 vibrational states of deuterated species of formic acid molecule DCOOH have been recorded by a FTIR spectrometer in the region 450- at a resolution of and a millimeter wave spectrometer. In the analysis microwave transitions from literature were used in addition to 14 835 assigned IR and 114 millimeter wave lines in the 71 and 91 vibrational states. The analysis resulted in band origins, rotational, centrifugal distortion, and eight interaction parameters of the Coriolis coupled 71 and 91 vibrational states. RMS deviation of the fit was for the IR data and the maximum values of J and Ka quantum numbers in the fit were 64, 28 and 64, 30 for 71 and 91 states, respectively.  相似文献   

10.
High-resolution Fourier transform infrared spectra of natural trans-ClHCCHF and of its isotopologue trans-ClHCCDF have been recorded in the region between 700 and 1150 cm−1 with the purpose to analyze the ν11 fundamental of the main species and the ν10 of its deuterated compound. Both bands, of symmetry species A″, present c-type envelope absorptions. Beside the expected features, the K structure of the P(J), Q(J), and R(J) manifolds was resolved and identified; the assignment of the rovibrational transitions was extended up to J = 92 and Ka = 13 for the trans-35ClHCCHF and up to J = 86 and Ka = 10 for trans-35ClHCCDF. More than 2900 and 2700 lines for the main and deuterated species, respectively, were analyzed by a least-squares procedure and reliable spectroscopic molecular parameters were determined for both isotopologues.  相似文献   

11.
12.
13.
Nitric acid which is an important NOx atmospheric reservoir molecule exhibits a strong absorption in the spectral region. Since this region, which corresponds to an atmospheric window, is one of the most commonly used for the retrieval of HNO3 in the atmosphere it is essential to have the best possible corresponding spectral parameters. Updates of these spectral line parameters were recently performed in the last versions of the atmospheric databases. They concern the line positions and intensities not only of the two interfering cold bands ν5 and 2ν9 but also of the ν5+ν9ν9 hot band. This hot band exhibits indeed a sharp and strong Q branch at which is clearly observable in atmospheric spectra and is used for the retrievals. However, in spite of these recent updates, it proved that the spectral parameters of the hot band are not accurate enough to reproduce accurately the observed atmospheric HNO3 absorption in ATMOS spectra. The present paper is dedicated to a more accurate analysis of this hot band using new laboratory high-resolution (0.002-) Fourier transform spectra. As a consequence, new and more precise line positions and line intensities (about 35% weaker than in HITRAN2K) were derived leading to a significant improvement in the simulation of atmospheric spectra.  相似文献   

14.
Previous studies of the parallel bands 2ν2 and 50 of CH3Br by the two first authors have been completed by the analysis of the weaker perpendicular band ν2 + ν5, centered near 2745 cm?1. It is well known that the v2 = 1 and v5 = 1 states of methylbromide are linked by an x-y-type Coriolis interaction. Therefore, in the 2500–2900-cm?1 range, the levels
(v2=2), (v52, l5=0), (v5=2, l5±2), (v5=v2=1, l=5±1)
are linked by a similar interaction. Least-squares and prediction programs have been written to treat this kind of problems and they have been satisfactorily applied to both isotopic species, CH379Br and CH381Br. A localized resonance in the K = 0 subband of ν2 + ν5 has been shown to be due to the 3ν3 + ν6 band. No evidence for a strong Fermi resonance between ν1 and 50 has been found.  相似文献   

15.
The ν3 fundamental band (CO stretch) of HDCO at 1724 cm?1 has been studied using both conventional infrared absorption and CO laser Stark spectroscopy. In addition to the excited-state (v3 = 1) rotational constants, improved constants for the ground state of HDCO have been obtained by combining previous microwave data with some infrared combination differences. The following constants were determined:
ν4 CF2CH2ν9 CF2CH2
ν0925.7692 (2)953.8057 (2)cm?1
A10 971.99 (2)11 026.918 (6)MHz
B10 414.98 (2)10 436.381 (6)MHz
C5328.48 (2)5346.100 (6)MHz
μ1.382 (1)1.382 (1)D
μ - μ00.014 (2)0.004 (1)D
  相似文献   

16.
For the first time the infrared spectrum of the AsHD2 molecule has been measured in the region of the bending fundamental bands ν3, ν4, and ν6 on a Fourier transform spectrometer with a resolution of 0.0024 cm−1 and analyzed. More than 5500 transitions with Jmax = 26 have been assigned and used both to obtain “ground state combination differences” and for the determination of upper state ro-vibrational energies of the triad (001000), (000100), and (000001). Rotational parameters including centrifugal distortion coefficients up to octic terms of the ground vibrational state were calculated by fitting more than 500 “ground state combination differences” with Jmax and . The obtained set of 24 parameters provides a rms-deviation of 0.00011 cm−1. The upper energies were fitted with 52 parameters of an effective Hamiltonian which takes into account strong resonance interactions between all vibrational states of the triad (001000), (000100), and (000001). The rms-deviation for the energy levels considered in the fit is 0.00014 cm−1.  相似文献   

17.
The gas phase infrared spectrum of monoisotopic H3Si37Cl has been reinvestigated in the ν1/ν4 region near 2200 cm−1, using a Fourier transform spectrometer, with a nominal resolution of 0.0027 cm−1. The rovibrational analysis confirms, besides the weak Coriolis x, y resonance between the (v1 = 1) and (v4 = 1) levels, the existence of two strong local perturbations in the ν4 band. These are caused by rotational (Δk = Δl = ±1) type resonances with and , respectively. Another local perturbation of the 12 ? KΔK ? 14 subbands of the ν4 band, probably due to a (Δk = Δl = ±1) interaction with , was detected and analyzed. All these local perturbations have been studied individually using a simple model of two interacting sublevels. Without the transitions involved in the local perturbations, more than 2000 lines of the ν1/ν4 band system were used to obtain a complete set of vibration-rotation parameters set for the v1 = 1 and v4 = 1 states. By means of a band contour simulation, both the transition moment ratio ∣M4:M1∣ = 1.25 and a positive sign of the Coriolis intensity perturbation were determined.The present results, together with the accurate existing data for ν2, ν3, ν5, and ν6 bands, allowed us to derive the experimental values, Ae = 2.8722945(37) cm−1 and Be = 0.2182248(22) cm−1, which are compared with those of ab initio calculations.  相似文献   

18.
The infrared spectra of the 2ν1, 2ν2 and 2ν3 overtones of perchloryl fluoride, FClO3, have been recorded at high resolution using monoisotopic pure samples. Four symmetric top species have been investigated: F35Cl16O3, F37Cl16O3, F35Cl18O3 and F37Cl18O3. The vi = 2, i = 1, 2, 3 vibrationally excited states are totally symmetric, so these overtones correspond to parallel bands of medium/weak intensity, centered from 2010 to 2120 cm−1 (2ν1), from 1390 to 1430 cm−1 (2ν2) and from 1070 to 1100 cm−1 (2ν3). Most of the bands are unperturbed and their analysis was straightforward. The band origins, the rotational and centrifugal molecular constants in the v1 = 2, v2 = 2 and v3 = 2 states have been determined, with standard deviations of the fits from 0.00024 to 0.00067 cm−1. The 2ν1 overtones of F35Cl16O3 and F37Cl16O3 are perturbed by an A1/E Coriolis resonance between the v1 = 2 state and one E component of the v4 = 1, v6 = 2 manifold. The 2ν2 of F37Cl18O3 is perturbed by the same kind of interaction involving the v1 = v6 = 1 (E) state, at about 1396 cm−1. In these bands the resonance is localized on rotational levels with specific J and K values. As a consequence, a few transitions of the perpendicular bands involving the interacting levels could be identified in the spectra. A simultaneous fit of the transitions assigned to the dyads has been performed and the parameters of the excited states have been determined, including the high order Coriolis interaction coefficient . The anharmonic constants x11, x22, x33 of all the studied isotopologues of FClO3, x46 of F35Cl16O3, x46 + g46 of F37Cl16O3 and x16 of F37Cl18O3, have been derived.  相似文献   

19.
The high-resolution overtone spectrum of OCS has been recorded in the region of the ν1+4ν3 and 5ν3 bands by intracavity laser absorption spectroscopy based on an optically pumped vertical external cavity surface emitting laser (VECSEL). The extremely weak ν1+4ν3 band at was found to be isolated. The 5ν3 band at is accompanied by two weaker bands at 9933.53 and assigned to the 1204-0000 and 0404-0000 bands, respectively. In addition, the 0115-0110 hot band was detected together with the extremely weak band heads of the R branch of the 020,25-020,20 hot bands. Finally, the 5ν3 band of the 16O12C34S minor isotopomer, present in natural abundance in the sample, was also observed and rotationally analyzed. Effective state parameters could be retrieved by standard band-by-band rotational fitting of the line positions, leading to a typical rms of . The observed line positions were compared to the predictions of the global model described by Rhaibi et al. [J. Mol. Spectrosc. 191 (1998) 32-44]. In general, the agreement is excellent, close to the experimental uncertainty () thus confirming the high predictive ability of this effective Hamiltonian model. Weak but significant deviations up to were, however, identified for two rotational levels of the highly excited 2,160,0 dark state, observed through a local interaction with the 0005 state. In the case of the 16O12C34S isotopomer, the predicted line wavenumbers of the 5ν3 band were globally overestimated by about . The new data have been included in the corresponding global model, leading to almost unchanged values of the molecular parameters and a statistical agreement with the experiment.  相似文献   

20.
Two interacting vibrational modes ν6 and ν8 of 13C species of formic acid have been studied with high resolution FTIR spectroscopy in the range 900-1300 cm−1 with an instrumental resolution of 0.0018 cm−1. More than 10 000 lines have been assigned and fitted with a RMS deviation of 0.00024 cm−1. The band centers, as well as the rotational, quartic and sextic centrifugal distortion parameters and 6 interaction parameters have been determined. The obtained parameters have enabled the assignments of 24 FIR laser emissions of this molecule observed previously by Dangoisse and Glorieux [D. Dangoisse, P. Glorieux, J. Mol. Spectrosc. 92 (1982) 283-297], Luis et al. [G.M.R.S. Luis, E.M. Telles, A. Scalabrin, D. Pereira, IEEE J. Quantum. Electron. QE-34 (1998) 767-769], and Bertolini et al. [A. Bertolini, G. Carelli, C.A. Massa, A. Moretti, F. Strumia, Infrared Phys. Technol. 40 (1999) 33-36].  相似文献   

ConstantGround statev3 = 1 stateUnits
ν01724.267cm?1
A198 119.75198 210.4MHz
B34 910.64634 676.6MHz
C29 561.48829 331.3MHz
μa2.33022.3486D
μb0.1950.190D
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号