首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a non‐iterative numerical approach for two‐dimensional laminar viscous flow over a semi‐infinite flat plane, governed by the Falkner–Skan equation is proposed. This approach can solve the non‐linear Falkner–Skan equation without any iteration and verifies that a direct numerical approach could be proposed even for non‐linear problems. Furthermore, this approach can also provide a family of iterative formulae, so that it logically contains traditional iterative techniques. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This paper considers the convergence rate of an iterative numerical scheme as a method for accelerating at the post‐processor stage. The methodology adapted here is: (1) residual eigenmodes included in the origin of the convex hull are eliminated; (2) remaining residual terms are smoothed away by the main convergence algorithm. For this purpose, the polynomial matrix approach is employed for deriving the characteristic equation by two different methods. The first method is based on vector scaling and the second is based on the normal equations approach. The input for both methods is the solution difference between two consecutive iteration/cycle levels obtained from the main program. The singular value decomposition was employed for both methods due to the ill‐conditioned structure of the matrices. The use of the explicit form of the Richardson extrapolation in the present work overrules the need to employ the Richardson iteration with a Leja ordering. The performance of these methods was compared with the GMRES algorithm for three representative problems: two‐dimensional boundary value problem using the Laplace equation, three‐dimensional multi‐grid, potential solution over a sphere and the one‐dimensional steady state Burger equation. In all three examples both methods have the same rate of convergence, or better, as that of the GMRES method in terms of computer operational count. However, in terms of storage requirements, the method based upon vector scaling has a significant advantage over the normal equations approach as well as the GMRES method, in which only one vector of the N grid‐points is required. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
We consider time‐dependent thermal fluid structure interaction. The respective models are the compressible Navier–Stokes equations and the nonlinear heat equation. A partitioned coupling approach via a Dirichlet–Neumann method and a fixed point iteration is employed. As a reference solver, a previously developed efficient time‐adaptive higher‐order time integration scheme is used. To improve on this, we work on reducing the number of fixed point coupling iterations. Using the idea of extrapolation based on data given from the time integration by deriving such methods for SDIRK2, it is possible to reduce the number of fixed point iterations further by up to a factor of two with linear extrapolation performing better than quadratic. This leads to schemes that can use less than two iterations per time step. Furthermore, widely used vector extrapolation methods for convergence acceleration of the fixed point iteration are tested, namely Aitken relaxation, minimal polynomial extrapolation and reduced rank extrapolation. These have no beneficial effects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes a domain decomposition method for the incompressible Navier–Stokes equations in general co‐ordinates. Domain decomposition techniques are needed for solving flow problems in complicated geometries while retaining structured grids on each of the subdomains. This is the so‐called block‐structured approach. It enables the use of fast vectorized iterative methods on the subdomains. The Navier–Stokes equations are discretized on a staggered grid using finite volumes. The pressure‐correction technique is used to solve the momentum equations together with incompressibility conditions. Schwarz domain decomposition is used to solve the momentum and pressure equations on the composite domain. Convergence of domain decomposition is accelerated by a GMRES Krylov subspace method. Computations are presented for a variety of flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
We recently proposed an improved (9,5) higher order compact (HOC) scheme for the unsteady two‐dimensional (2‐D) convection–diffusion equations. Because of using only five points at the current time level in the discretization procedure, the scheme was seen to be computationally more efficient than its predecessors. It was also seen to capture very accurately the solution of the unsteady 2‐D Navier–Stokes (N–S) equations for incompressible viscous flows in the stream function–vorticity (ψ – ω) formulation. In this paper, we extend the scope of the scheme for solving the unsteady incompressible N–S equations based on primitive variable formulation on a collocated grid. The parabolic momentum equations are solved for the velocity field by a time‐marching strategy and the pressure is obtained by discretizing the elliptic pressure Poisson equation by the steady‐state form of the (9,5) scheme with the Neumann boundary conditions. In particular, for pressure, we adopt a strategy on the collocated grid in conjunction with ideas borrowed from the staggered grid approach in finite volume. We first apply this extension to a problem having analytical solution and then to the famous lid‐driven square cavity problem. We also apply our formulation to the backward‐facing step problem to see how the method performs for external flow problems. The results are presented and are compared with established numerical results. This new approach is seen to produce excellent comparison in all the cases. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Using a non‐conforming C0‐interior penalty method and the Galerkin least‐square approach, we develop a continuous–discontinuous Galerkin finite element method for discretizing fourth‐order incompressible flow problems. The formulation is weakly coercive for spaces that fail to satisfy the inf‐sup condition and consider discontinuous basis functions for the pressure field. We consider the results of a stability analysis through a lemma which indicates that there exists an optimal or quasi‐optimal least‐square stability parameter that depends on the polynomial degree used to interpolate the velocity and pressure fields, and on the geometry of the finite element in the mesh. We provide several numerical experiments illustrating such dependence, as well as the robustness of the method to deal with arbitrary basis functions for velocity and pressure, and the ability to stabilize large pressure gradients. We believe the results provided in this paper contribute for establishing a paradigm for future studies of the parameter of the Galerkin least square method for second‐gradient theory of incompressible flow problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
A finite point method for solving compressible flow problems involving moving boundaries and adaptivity is presented. The numerical methodology is based on an upwind‐biased discretization of the Euler equations, written in arbitrary Lagrangian–Eulerian form and integrated in time by means of a dual‐time steeping technique. In order to exploit the meshless potential of the method, a domain deformation approach based on the spring network analogy is implemented, and h‐adaptivity is also employed in the computations. Typical movable boundary problems in transonic flow regime are solved to assess the performance of the proposed technique. In addition, an application to a fluid–structure interaction problem involving static aeroelasticity illustrates the capability of the method to deal with practical engineering analyses. The computational cost and multi‐core performance of the proposed technique is also discussed through the examples provided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Stabilized fractional step algorithm has been widely employed for numerical solution of incompressible Navier–Stokes equations. However, smaller time step sizes are required to use for existing explicit and semi‐implicit versions of the algorithm due to their fully or partially explicit nature particularly for highly viscous flow problems. The purpose of this paper is to present two modified versions of the fractional step algorithm using characteristic based split and Taylor–Galerkin like based split. The proposed modified versions of the algorithm are based on introducing an iterative procedure into the algorithm and allow much larger time step sizes than those required to the preceding ones. A numerical study of stability at acceptable convergence rate and accuracy as well as capability in circumventing the restriction imposed by the LBB condition for the proposed iterative versions of the algorithm is carried out with the plane Poisseuille flow problem under different Reynolds numbers ranging from low to high viscosities. Numerical experiments in the plane Poisseuille flow and the lid‐driven cavity flow problems demonstrate the improved performance of the proposed versions of the algorithm, which are further applied to numerical simulation of the polymer injection moulding process. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
13.
We introduce a stabilized finite element method for the 3D non‐Newtonian Navier–Stokes equations and a parallel domain decomposition method for solving the sparse system of nonlinear equations arising from the discretization. Non‐Newtonian flow problems are, generally speaking, more challenging than Newtonian flows because the nonlinearities are not only in the convection term but also in the viscosity term, which depends on the shear rate. Many good iterative methods and preconditioning techniques that work well for the Newtonian flows do not work well for the non‐Newtonian flows. We employ a Galerkin/least squares finite element method, with stabilization parameters adjusted to count the non‐Newtonian effect, to discretize the equations, and the resulting highly nonlinear system of equations is solved by a Newton–Krylov–Schwarz algorithm. In this study, we apply the proposed method to some inelastic power‐law fluid flows through the eccentric annuli with inner cylinder rotation and investigate the robustness of the method with respect to some physical parameters, including the power‐law index and the Reynolds number ratios. We then report the superlinear speedup achieved by the domain decomposition algorithm on a computer with up to 512 processors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction between the hydrodynamic forces of a flow field and the elastic forces of adjacent deformable boundaries is described by elastohydrodynamics, a coupled fluid–elastic membrane problem. Direct numerical solution of the unsteady, highly non-linear equations requires that the dynamic evolution of both the flow field and the domain shape be determined as part of the solution, since neither is known a priori. This paper describes a numerical algorithm based on the deformable spatial domain space–time (DSD/ST) finite element method for the unsteady motion of an incompressible, viscous fluid with elastic membrane interaction. The unsteady Navier–Stoke and elastic membrane equations are solved separately using an iterative procedure by the GMRES technique with an incomplete lower-upper (ILU) decomposition at every time instant. One-dimensional, two-dimensional and deformable domain model problems are used to demonstrate the capabilities and accuracy of the present algorithm. Both steady state and transient problems are studied. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents an approach to develop high‐order, temporally accurate, finite element approximations of fluid‐structure interaction (FSI) problems. The proposed numerical method uses an implicit monolithic formulation in which the same implicit Runge–Kutta (IRK) temporal integrator is used for the incompressible flow, the structural equations undergoing large displacements, and the coupling terms at the fluid‐solid interface. In this context of stiff interaction problems, the fully implicit one‐step approach presented is an original alternative to traditional multistep or explicit one‐step finite element approaches. The numerical scheme takes advantage of an arbitrary Lagrangian–Eulerian formulation of the equations designed to satisfy the geometric conservation law and to guarantee that the high‐order temporal accuracy of the IRK time integrators observed on fixed meshes is preserved on arbitrary Lagrangian–Eulerian deforming meshes. A thorough review of the literature reveals that in most previous works, high‐order time accuracy (higher than second order) is seldom achieved for FSI problems. We present thorough time‐step refinement studies for a rigid oscillating‐airfoil on deforming meshes to confirm the time accuracy on the extracted aerodynamics reactions of IRK time integrators up to fifth order. Efficiency of the proposed approach is then tested on a stiff FSI problem of flow‐induced vibrations of a flexible strip. The time‐step refinement studies indicate the following: stability of the proposed approach is always observed even with large time step and spurious oscillations on the structure are avoided without added damping. While higher order IRK schemes require more memory than classical schemes (implicit Euler), they are faster for a given level of temporal accuracy in two dimensions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is concerned with the development of algebraic multigrid (AMG) solution methods for the coupled vector–scalar fields of incompressible fluid flow. It addresses in particular the problems of unstable smoothing and of maintaining good vector–scalar coupling in the AMG coarse‐grid approximations. Two different approaches have been adopted. The first is a direct approach based on a second‐order discrete‐difference formulation in primitive variables. Here smoothing is stabilized using a minimum residual control harness and velocity–pressure coupling is maintained by employing a special interpolation during the construction of the inter‐grid transfer operators. The second is an indirect approach that avoids the coupling problem altogether by using a fourth‐order discrete‐difference formulation in a single scalar‐field variable, primitive variables being recovered in post‐processing steps. In both approaches the discrete‐difference equations are for the steady‐state limit (infinite time step) with a fully implicit treatment of advection based on central differencing using uniform and non‐uniform unstructured meshes. They are solved by Picard iteration, the AMG solvers being used repeatedly for each linear approximation. Both classical AMG (C‐AMG) and smoothed‐aggregation AMG (SA‐AMG) are used. In the direct approach, the SA‐AMG solver (with inter‐grid transfer operators based on mixed‐order interpolation) provides an almost mesh‐independent convergence. In the indirect approach for uniform meshes, the C‐AMG solver (based on a Jacobi‐relaxed interpolation) provides solutions with an optimum scaling of the convergence rates. For non‐uniform meshes this convergence becomes mesh dependent but the overall solution cost increases relatively slowly with increasing mesh bandwidth. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Based on a new global variational formulation, a spectral element approximation of the incompressible Navier–Stokes/Euler coupled problem gives rise to a global discrete saddle problem. The classical Uzawa algorithm decouples the original saddle problem into two positive definite symmetric systems. Iterative solutions of such systems are feasible and attractive for large problems. It is shown that, provided an appropriate pre‐conditioner is chosen for the pressure system, the nested conjugate gradient methods can be applied to obtain rapid convergence rates. Detailed numerical examples are given to prove the quality of the pre‐conditioner. Thanks to the rapid iterative convergence, the global Uzawa algorithm takes advantage of this as compared with the classical iteration by sub‐domain procedures. Furthermore, a generalization of the pre‐conditioned iterative algorithm to flow simulation is carried out. Comparisons of computational complexity between the Navier–Stokes/Euler coupled solution and the full Navier–Stokes solution are made. It is shown that the gain obtained by using the Navier–Stokes/Euler coupled solution is generally considerable. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The finite volume method with exact two‐phase Riemann problems (FIVER) is a two‐faceted computational method for compressible multi‐material (fluid–fluid, fluid–structure, and multi‐fluid–structure) problems characterized by large density jumps, and/or highly nonlinear structural motions and deformations. For compressible multi‐phase flow problems, FIVER is a Godunov‐type discretization scheme characterized by the construction and solution at the material interfaces of local, exact, two‐phase Riemann problems. For compressible fluid–structure interaction (FSI) problems, it is an embedded boundary method for computational fluid dynamics (CFD) capable of handling large structural deformations and topological changes. Originally developed for inviscid multi‐material computations on nonbody‐fitted structured and unstructured grids, FIVER is extended in this paper to laminar and turbulent viscous flow and FSI problems. To this effect, it is equipped with carefully designed extrapolation schemes for populating the ghost fluid values needed for the construction, in the vicinity of the fluid–structure interface, of second‐order spatial approximations of the viscous fluxes and source terms associated with Reynolds averaged Navier–Stokes (RANS)‐based turbulence models and large eddy simulation (LES). Two support algorithms, which pertain to the application of any embedded boundary method for CFD to the robust, accurate, and fast solution of FSI problems, are also presented in this paper. The first one focuses on the fast computation of the time‐dependent distance to the wall because it is required by many RANS‐based turbulence models. The second algorithm addresses the robust and accurate computation of the flow‐induced forces and moments on embedded discrete surfaces, and their finite element representations when these surfaces are flexible. Equipped with these two auxiliary algorithms, the extension of FIVER to viscous flow and FSI problems is first verified with the LES of a turbulent flow past an immobile prolate spheroid, and the computation of a series of unsteady laminar flows past two counter‐rotating cylinders. Then, its potential for the solution of complex, turbulent, and flexible FSI problems is also demonstrated with the simulation, using the Spalart–Allmaras turbulence model, of the vertical tail buffeting of an F/A‐18 aircraft configuration and the comparison of the obtained numerical results with flight test data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is devoted to the development of a parallel, spectral and second‐order time‐accurate method for solving the incompressible and variable density Navier–Stokes equations. The method is well suited for finite thickness density layers and is very efficient, especially for three‐dimensional computations. It is based on an exact projection technique. To enforce incompressibility, for a non‐homogeneous fluid, the pressure is computed using an iterative algorithm. A complete study of the convergence properties of this algorithm is done for different density variations. Numerical simulations showing, qualitatively, the capabilities of the developed Navier–Stokes solver for many realistic problems are presented. The numerical procedure is also validated quantitatively by reproducing growth rates from the linear instability theory in a three‐dimensional direct numerical simulation of an unstable, non‐homogeneous, flow configuration. It is also shown that, even in a turbulent flow, the spectral accuracy is recovered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号