首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐order computational tool based on spectral and spectral/hp elements (J. Fluid. Mech. 2009; to appear) discretizations is employed for the analysis of BiGlobal fluid instability problems. Unlike other implementations of this type, which use a time‐stepping‐based formulation (J. Comput. Phys. 1994; 110 (1):82–102; J. Fluid Mech. 1996; 322 :215–241), a formulation is considered here in which the discretized matrix is constructed and stored prior to applying an iterative shift‐and‐invert Arnoldi algorithm for the solution of the generalized eigenvalue problem. In contrast to the time‐stepping‐based formulations, the matrix‐based approach permits searching anywhere in the eigenspace using shifting. Hybrid and fully unstructured meshes are used in conjunction with the spatial discretization. This permits analysis of flow instability on arbitrarily complex 2‐D geometries, homogeneous in the third spatial direction and allows both mesh (h)‐refinement as well as polynomial (p)‐refinement. A series of validation cases has been defined, using well‐known stability results in confined geometries. In addition new results are presented for ducts of curvilinear cross‐sections with rounded corners. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A new family of locally conservative cell‐centred flux‐continuous schemes is presented for solving the porous media general‐tensor pressure equation. A general geometry‐permeability tensor approximation is introduced that is piecewise constant over the subcells of the control volumes and ensures that the local discrete general tensor is elliptic. A family of control‐volume distributed subcell flux‐continuous schemes are defined in terms of the quadrature parametrization q (Multigrid Methods. Birkhauser: Basel, 1993; Proceedings of the 4th European Conference on the Mathematics of Oil Recovery, Norway, June 1994; Comput. Geosci. 1998; 2 :259–290), where the local position of flux continuity defines the quadrature point and each particular scheme. The subcell tensor approximation ensures that a symmetric positive‐definite (SPD) discretization matrix is obtained for the base member (q=1) of the formulation. The physical‐space schemes are shown to be non‐symmetric for general quadrilateral cells. Conditions for discrete ellipticity of the non‐symmetric schemes are derived with respect to the local symmetric part of the tensor. The relationship with the mixed finite element method is given for both the physical‐space and subcell‐space q‐families of schemes. M‐matrix monotonicity conditions for these schemes are summarized. A numerical convergence study of the schemes shows that while the physical‐space schemes are the most accurate, the subcell tensor approximation reduces solution errors when compared with earlier cell‐wise constant tensor schemes and that subcell tensor approximation using the control‐volume face geometry yields the best SPD scheme results. A particular quadrature point is found to improve numerical convergence of the subcell schemes for the cases tested. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the locally conservative Galerkin (LCG) method (Numer. Heat Transfer B Fundam. 2004; 46 :357–370; Int. J. Numer. Methods Eng. 2007) has been extended to solve the incompressible Navier–Stokes equations. A new correction term is also incorporated to make the formulation to give identical results to that of the continuous Galerkin (CG) method. In addition to ensuring element‐by‐element conservation, the method also allows solution of the governing equations over individual elements, independent of the neighbouring elements. This is achieved within the CG framework by breaking the domain into elemental sub‐domains. Although this allows discontinuous trial function field, we have carried out the formulation using the continuous trial function space as the basis. Thus, the changes in the existing CFD codes are kept to a minimum. The edge fluxes, establishing the continuity between neighbouring elements, are calculated via a post‐processing step during the time‐stepping operation. Therefore, the employed formulation needs to be carried out using either a time‐stepping or an equivalent iterative scheme that allows post‐processing of fluxes. The time‐stepping algorithm employed in this paper is based on the characteristic‐based split (CBS) scheme. Both steady‐ and unsteady‐state examples presented show that the element‐by‐element formulation employed is accurate and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A family of flux‐continuous, locally conservative, control‐volume‐distributed multi‐point flux approximation (CVD‐MPFA) schemes has been developed for solving the general geometry‐permeability tensor pressure equation on structured and unstructured grids. These schemes are applicable to the full‐tensor pressure equation with generally discontinuous coefficients and remove the O(1) errors introduced by standard reservoir simulation schemes when applied to full‐tensor flow approximation. The family of flux‐continuous schemes is characterized by a quadrature parameterization. Improved numerical convergence for the family of CVD‐MPFA schemes using the quadrature parameterization has been observed for structured and unstructured grids in two dimensions. The CVD‐MPFA family cell‐vertex formulation is extended to classical general element types in 3‐D including prisms, pyramids, hexahedra and tetrahedra. A numerical convergence study of the CVD‐MPFA schemes on general unstructured grids comprising of triangular elements in 2‐D and prismatic, pyramidal, hexahedral and tetrahedral shape elements in 3‐D is presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A finite volume, time‐marching for solving time‐dependent viscoelastic flow in two space dimensions for Oldroyd‐B and Phan Thien–Tanner fluids, is presented. A non‐uniform staggered grid system is used. The conservation and constitutive equations are solved using the finite volume method with an upwind scheme for the viscoelastic stresses and an hybrid scheme for the velocities. To calculate the pressure field, the semi‐implicit method for the pressure linked equation revised method is used. The discretized equations are solved sequentially, using the tridiagonal matrix algorithm solver with under‐relaxation. In both, the full approximation storage multigrid algorithm is used to speed up the convergence rate. Simulations of viscoelastic flows in four‐to‐one abrupt plane contraction are carried out. We will study the behaviour at the entrance corner of the four‐to‐one planar abrupt contraction. Using this solver, we show convergence up to a Weissenberg number We of 20 for the Oldroyd‐B model. No limiting Weissenberg number is observed even though a Phan Thien–Tanner model is used. Several numerical results are presented. Smooth and stable solutions are obtained for high Weissenberg number. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a stabilized extended finite element method (XFEM) based fluid formulation to embed arbitrary fluid patches into a fixed background fluid mesh. The new approach is highly beneficial when it comes to computational grid generation for complex domains, as it allows locally increased resolutions independent from size and structure of the background mesh. Motivating applications for such a domain decomposition technique are complex fluid‐structure interaction problems, where an additional boundary layer mesh is used to accurately capture the flow around the structure. The objective of this work is to provide an accurate and robust XFEM‐based coupling for low‐ as well as high‐Reynolds‐number flows. Our formulation is built from the following essential ingredients: Coupling conditions on the embedded interface are imposed weakly using Nitsche's method supported by extra terms to guarantee mass conservation and to control the convective mass transport across the interface for transient viscous‐dominated and convection‐dominated flows. Residual‐based fluid stabilizations in the interior of the fluid subdomains and accompanying face‐oriented fluid and ghost‐penalty stabilizations in the interface zone stabilize the formulation in the entire fluid domain. A detailed numerical study of our stabilized embedded fluid formulation, including an investigation of variants of Nitsche's method for viscous flows, shows optimal error convergence for viscous‐dominated and convection‐dominated flow problems independent of the interface position. Challenging two‐dimensional and three‐dimensional numerical examples highlight the robustness of our approach in all flow regimes: benchmark computations for laminar flow around a cylinder, a turbulent driven cavity flow at Re = 10000 and the flow interacting with a three‐dimensional flexible wall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly non‐linear and extremely dispersive water waves. The analysis demonstrates the near‐equivalence of classical linear Fourier (von Neumann) techniques with matrix‐based methods for formulations in both one and two horizontal dimensions. The matrix‐based method is also extended to show the local de‐stabilizing effects of the non‐linear terms, as well as the stabilizing effects of numerical dissipation. A comparison of the relative stability of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep‐water non‐linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only moderately non‐normal, suggesting that the eigenvalues are likely suitable for analysis purposes. Numerical experiments demonstrate excellent agreement with the linear analysis, and good qualitative agreement with the local non‐linear analysis. The various methods of analysis combine to provide significant insight into the numerical behaviour of this rather complicated system of non‐linear PDEs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
We report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two‐dimensional compressible inviscid flows. The starting point is a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi‐discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo‐time step requires the solution of a sparse linear system for the flow variables. In this study, a non‐overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow us to express the domain decomposition algorithm as a Richardson‐type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
A family of flux‐continuous, locally conservative, finite‐volume schemes has been developed for solving the general geometry‐permeability tensor (petroleum reservoir‐simulation) pressure equation on structured and unstructured grids and are control‐volume distributed (textit Comput. Geo. 1998; 2 :259–290; Comput. Geo. 2002; 6 :433–452). The schemes are applicable to diagonal and full tensor pressure equation with generally discontinuous coefficients and remove the O(1) errors introduced by standard reservoir‐simulation schemes (two‐point flux approximation) when applied to full tensor flow approximation. The family of flux‐continuous schemes is quantified by a quadrature parameterization (Int. J. Numer. Meth. Fluids 2006; 51 :1177–1203). Improved convergence (for two‐ and three‐dimensional formulation) using the quadrature parameterization has been observed for the family of flux‐continuous control‐volume distributed multi‐point flux approximation (CVD‐MPFA) schemes (Ph.D. Thesis, University of Wales, Swansea, U.K., 2007). In this paper family of flux‐continuous (CVD‐MPFA) schemes are used as a part of numerical upscaling procedure for upscaling the fine‐scale grid information (permeability) onto a coarse grid scale. A series of data‐sets (SPE, 2001) are tested where the upscaled permeability tensor is computed on a sequence of grid levels using the same fixed range of quadrature points in each case. The refinement studies presented involve:
  • (i) Refinement comparison study: In this study, permeability distribution for cells at each grid level is obtained by upscaling directly from the fine‐scale permeability field as in standard simulation practice.
  • (ii) Refinement study with renormalized permeability: In this refinement comparison, the local permeability is upscaled to the next grid level hierarchically, so that permeability values are renormalized to each coarser level. Hence, showing only the effect of increased grid resolution on upscaled permeability, compared with that obtained directly from the fine‐scale solution.
  • (iii) Refinement study with invariant permeability distribution: In this study, a classical mathematical convergence test is performed. The same coarse‐scale underlying permeability map is preserved on all grid levels including the fine‐scale reference solution.
The study is carried out for the discretization of the scheme in physical space. The benefit of using specific quadrature points is demonstrated for upscaling in this study and superconvergence is observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The objective of this paper is twofold. First, a stabilized finite element method (FEM) for the incompressible Navier–Stokes is presented and several numerical experiments are conducted to check its performance. This method is capable of dealing with all the instabilities that the standard Galerkin method presents, namely the pressure instability, the instability arising in convection‐dominated situations and the less popular instabilities found when the Navier–Stokes equations have a dominant Coriolis force or when there is a dominant absorption term arising from the small permeability of the medium where the flow takes place. The second objective is to describe a nodal‐based implementation of the finite element formulation introduced. This implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements, thus making the calculations much faster. In order to be able to do this, all the variables have to be defined at the nodes of the finite element mesh, not on the elements. This is also so for the stabilization parameters of the formulation. However, doing this gives rise to questions regarding the consistency and the conservation properties of the final scheme, which are addressed in this paper. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
12.
We present an eigen‐decomposition of the quasi‐linear convective flux formulation of the completely coupled Reynolds‐averaged Navier–Stokes and turbulence model equations. Based on these results, we formulate different approximate Riemann solvers that can be used as numerical flux functions in a DG discretization. The effect of the different strategies on the solution accuracy is investigated with numerical examples. The actual computations are performed using a p‐multigrid algorithm. To this end, we formulate a framework with a backward‐Euler smoother in which the linear systems are solved with a general preconditioned Krylov method. We present matrix‐free implementations and memory‐lean line‐Jacobi preconditioners and compare the effects of some parameter choices. In particular, p‐multigrid is found to be less efficient than might be expected from recent findings by other authors. This might be due to the consideration of turbulent flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A compressible, multiphase, one‐fluid Reynolds‐averaged Navier–Stokes solver has been developed to study turbulent cavitating flows. The interplay between turbulence and cavitation regarding the unsteadiness and structure of the flow is complex and not well understood. This constitutes a critical point to accurately simulate the dynamic behavior of sheet cavities. In the present study, different formulations based on a k ? ? transport‐equation model are investigated and a scale‐adaptive formulation is proposed. Numerical results are given for a Venturi geometry and comparisons are made with experimental data. The scale‐adaptive model shows several improvements compared with standard turbulence models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In the present work a finite‐difference technique is developed for the implementation of a new method proposed by Aristov and Pukhnachev (Doklady Phys. 2004; 49 (2):112–115) for modeling of the axisymmetric viscous incompressible fluid flows. A new function is introduced that is related to the pressure and a system similar to the vorticity/stream function formulation is derived for the cross‐flow. This system is coupled to an equation for the azimuthal velocity component. The scheme and the algorithm treat the equations for the cross‐flow as an inextricably coupled system, which allows one to satisfy two conditions for the stream function with no condition on the auxiliary function. The issue of singularity of the matrix is tackled by adding a small parameter in the boundary conditions. The scheme is thoroughly validated on grids with different resolutions. The new numerical tool is applied to the Taylor flow between concentric rotating cylinders when the upper and lower lids are allowed to rotate independently from the inner cylinder, while the outer cylinder is held at rest. The phenomenology of this flow is adequately represented by the numerical model, including the hysteresis that takes place near certain specific values of the Reynolds number. Thus, the present results can be construed to demonstrate the viability of the new model. The success can be attributed to the adequate physical nature of the auxiliary function. The proposed technique can be used in the future for in‐depth investigations of the bifurcation phenomena in rotating flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A 3D axisymmetric Galerkin boundary integral formulation for potential flow is employed to model two fluids of different densities, one fluid enclosed inside the other. The interface variables are the velocity potential and the normal velocity, and they can be solved for separately, the second linear system being symmetric. The algorithm is validated by comparing with the analytic solutions for a static interior spherical drop over a range of values for the relative densities of exterior and interior fluids and various boundary conditions. For time‐dependent simulations utilizing a level set method for the interface tracking, the accuracy has been checked by comparing against the known oscillation frequency of the sphere. Pinch‐off profiles corresponding to an initial two‐lobe geometry drop and D = 6 are also presented. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

16.
Numerical calculations of the 2‐D steady incompressible driven cavity flow are presented. The Navier–Stokes equations in streamfunction and vorticity formulation are solved numerically using a fine uniform grid mesh of 601 × 601. The steady driven cavity flow solutions are computed for Re ? 21 000 with a maximum absolute residuals of the governing equations that were less than 10?10. A new quaternary vortex at the bottom left corner and a new tertiary vortex at the top left corner of the cavity are observed in the flow field as the Reynolds number increases. Detailed results are presented and comparisons are made with benchmark solutions found in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we derive an object‐oriented parallel algorithm for three‐dimensional isopycnal flow simulations. The matrix formulation is central to the algorithm. It enables us to apply an efficient preconditioned conjugate gradient linear solver for the global system of equations, and leads naturally to an object‐oriented data structure design and parallel implementation. We discuss as well, in less detail, a similar algorithm based on the reduced system, suitable also for parallel computation. Favorable performances are observed on test problems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we present a SIMPLE based algorithm in the context of the discontinuous Galerkin method for unsteady incompressible flows. Time discretization is done fully implicit using backward differentiation formulae (BDF) of varying order from 1 to 4. We show that the original equation for the pressure correction can be modified by using an equivalent operator stemming from the symmetric interior penalty (SIP) method leading to a reduced stencil size. To assess the accuracy as well as the stability and the performance of the scheme, three different test cases are carried out: the Taylor vortex flow, the Orr‐Sommerfeld stability problem for plane Poiseuille flow and the flow past a square cylinder. (1) Simulating the Taylor vortex flow, we verify the temporal accuracy for the different BDF schemes. Using the mixed‐order formulation, a spatial convergence study yields convergence rates of k + 1 and k in the L2‐norm for velocity and pressure, respectively. For the equal‐order formulation, we obtain approximately the same convergence rates, while the absolute error is smaller. (2) The stability of our method is examined by simulating the Orr–Sommerfeld stability problem. Using the mixed‐order formulation and adjusting the penalty parameter of the symmetric interior penalty method for the discretization of the viscous part, we can demonstrate the long‐term stability of the algorithm. Using pressure stabilization the equal‐order formulation is stable without changing the penalty parameter. (3) Finally, the results for the flow past a square cylinder show excellent agreement with numerical reference solutions as well as experiments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical algorithm for the steady state solution of three‐dimensional incompressible flows is presented. A preconditioned time marching scheme is applied to the conservative form of the governing equations. The preconditioning matrix multiplies the time derivatives of the system and circumvents the eigenvalue‐caused stiffness at low speed. The formulation is suitable for constant density flows and for flows where the density depends on non‐passive scalars, such as in low‐speed combustion applications. The k–ε model accounts for turbulent transport effects. A cell‐centred finite volume formulation with a Runge–Kutta time stepping scheme for the primitive variables is used. Second‐order spatial accuracy is achieved by developing for the preconditioned system an approximate Riemann solver with MUSCL reconstruction. A multi‐grid technique coupled with local time stepping and implicit residual smoothing is used to accelerate the convergence to the steady state solution. The convergence behaviour and the validation of the predicted solutions are examined for laminar and turbulent constant density flows and for a turbulent non‐premixed flame simulated by a presumed probability density function (PDF) model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
In modeling flow in open channels, the traditional finite difference/finite volume schemes become inefficient and warrant special numerical treatment in the presence of shocks and discontinuities. The numerical oscillations that arise by making use of a second‐ and higher‐order schemes require some additional smoothing mechanism. A characteristic feature of high‐resolution schemes lies in smooth capturing of the shock fronts. This paper provides a general formulation for a flux‐corrected transport algorithm to the one‐dimensional open channel flow equations. The preliminary results presented show that the present algorithm is an efficient, conservative and robust tool that can be easily coded. To demonstrate the robustness of the present formulation, results are compared with other published numerical results, experimental data and analytical solutions when available. In particular, a comprehensive study on the effect of the source term, dry bed, variable width channel, steep sloping channel and flow with mixed flow conditions (as in a hydraulic jump) has been carried out to test the efficacy of the present algorithm. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号