首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A transient haemodynamic study in a model cavopulmonary vascular system has been carried out for a typical range of parameters using a finite element‐based Navier–Stokes solver. The focus of this study is to investigate the influence of non‐Newtonian behaviour of the blood on the haemodynamic quantities, such as wall shear stress (WSS) and flow pattern. The computational fluid dynamics (CFD) model is based on an artificial compressibility characteristic‐based split (AC‐CBS) scheme, which has been adopted to solve the Navier–Stokes equations in space–time domain. A power law model has been implemented to characterize the shear thinning nature of the blood depending on the local strain rate. Using the computational model, numerical investigations have been performed for Newtonian and non‐Newtonian flows for different frequencies and input pulse forms. The haemodynamic quantities observed in total cavopulmonary connection (TCPC) for the above conditions suggest that there are considerable differences in average (about 25–40%) and peak (about 50%) WSS distributions, when the non‐Newtonian behaviour of the blood is taken into account. The lower WSS levels observed for non‐Newtonian cases point to the higher risk of lesion formation, especially at higher pulsation frequencies. A realistic pulse form is relatively safer than a sinusoidal pulse as it has more energy distributed in the higher harmonics, which results in higher average WSS values. The present study highlights the importance of including non‐Newtonian shear thinning behaviour for modelling blood flow in the vicinity of repaired arterial connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
This article considers numerical implementation of the Crank–Nicolson/Adams–Bashforth scheme for the two‐dimensional non‐stationary Navier–Stokes equations. A finite element method is applied for the spatial approximation of the velocity and pressure. The time discretization is based on the Crank–Nicolson scheme for the linear term and the explicit Adams–Bashforth scheme for the nonlinear term. Comparison with other methods, through a series of numerical experiments, shows that this method is almost unconditionally stable and convergent, i.e. stable and convergent when the time step is smaller than a given constant. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes a domain decomposition method for the incompressible Navier–Stokes equations in general co‐ordinates. Domain decomposition techniques are needed for solving flow problems in complicated geometries while retaining structured grids on each of the subdomains. This is the so‐called block‐structured approach. It enables the use of fast vectorized iterative methods on the subdomains. The Navier–Stokes equations are discretized on a staggered grid using finite volumes. The pressure‐correction technique is used to solve the momentum equations together with incompressibility conditions. Schwarz domain decomposition is used to solve the momentum and pressure equations on the composite domain. Convergence of domain decomposition is accelerated by a GMRES Krylov subspace method. Computations are presented for a variety of flows. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
A boundary element method for steady two‐dimensional low‐to‐moderate‐Reynolds number flows of incompressible fluids, using primitive variables, is presented. The velocity gradients in the Navier–Stokes equations are evaluated using the alternatives of upwind and central finite difference approximations, and derivatives of finite element shape functions. A direct iterative scheme is used to cope with the non‐linear character of the integral equations. In order to achieve convergence, an underrelaxation technique is employed at relatively high Reynolds numbers. Driven cavity flow in a square domain is considered to validate the proposed method by comparison with other published data. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a numerical algorithm using the pseudostress–velocity formulation to solve incompressible Newtonian flows. The pseudostress–velocity formulation is a variation of the stress–velocity formulation, which does not require symmetric tensor spaces in the finite element discretization. Hence its discretization is greatly simplified. The discrete system is further decoupled into an H ( div ) problem for the pseudostress and a post‐process resolving the velocity. This can be done conveniently by using the penalty method for steady‐state flows or by using the time discretization for nonsteady‐state flows. We apply this formulation to the 2D lid‐driven cavity problem and study its grid convergence rate. Also, computational results of the time‐dependent‐driven cavity problem and the flow past rectangular problem are reported. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A semi‐implicit method for coupled surface–subsurface flows in regional scale is proposed and analyzed. The flow domain is assumed to have a small vertical scale as compared with the horizontal extents. Thus, after hydrostatic approximation, the simplified governing equations are derived from the Reynolds averaged Navier–Stokes equations for the surface flow and from the Darcy's law for the subsurface flow. A conservative free‐surface equation is derived from a vertical integral of the incompressibility condition and extends to the whole water column including both, the surface and the subsurface, wet domains. Numerically, the horizontal domain is covered by an unstructured orthogonal grid that may include subgrid specifications. Along the vertical direction a simple z‐layer discretization is adopted. Semi‐implicit finite difference equations for velocities and a finite volume approximation for the free‐surface equation are derived in such a fashion that, after simple manipulation, the resulting discrete free‐surface equation yields a single, well‐posed, mildly nonlinear system. This system is efficiently solved by a nested Newton‐type iterative method that yields simultaneously the pressure and a non‐negative fluid volume throughout the computational grid. The time‐step size is not restricted by stability conditions dictated by friction or surface wave speed. The resulting algorithm is simple, extremely efficient, and very accurate. Exact mass conservation is assured also in presence of wetting and drying dynamics, in pressurized flow conditions, and during free‐surface transition through the interface. A few examples illustrate the model applicability and demonstrate the effectiveness of the proposed algorithm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper a semi‐implicit finite difference model for non‐hydrostatic, free‐surface flows is analyzed and discussed. It is shown that the present algorithm is generally more accurate than recently developed models for quasi‐hydrostatic flows. The governing equations are the free‐surface Navier–Stokes equations defined on a general, irregular domain of arbitrary scale. The momentum equations, the incompressibility condition and the equation for the free‐surface are integrated by a semi‐implicit algorithm in such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The velocity–vorticity formulation is selected to develop a time‐accurate CFD finite element algorithm for the incompressible Navier–Stokes equations in three dimensions.The finite element implementation uses equal order trilinear finite elements on a non‐staggered hexahedral mesh. A second order vorticity kinematic boundary condition is derived for the no slip wall boundary condition which also enforces the incompressibility constraint. A biconjugate gradient stabilized (BiCGSTAB) sparse iterative solver is utilized to solve the fully coupled system of equations as a Newton algorithm. The solver yields an efficient parallel solution algorithm on distributed‐memory machines, such as the IBM SP2. Three dimensional laminar flow solutions for a square channel, a lid‐driven cavity, and a thermal cavity are established and compared with available benchmark solutions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The second of a two‐paper series, this paper details a solver for the characteristics‐bias system from the acoustics–convection upstream resolution algorithm for the Euler and Navier–Stokes equations. An integral formulation leads to several surface integrals that allow effective enforcement of boundary conditions. Also presented is a new multi‐dimensional procedure to enforce a pressure boundary condition at a subsonic outlet, a procedure that remains accurate and stable. A classical finite element Galerkin discretization of the integral formulation on any prescribed grid directly yields an optimal discretely conservative upstream approximation for the Euler and Navier–Stokes equations, an approximation that remains multi‐dimensional independently of the orientation of the reference axes and computational cells. The time‐dependent discrete equations are then integrated in time via an implicit Runge–Kutta procedure that in this paper is proven to remain absolutely non‐linearly stable for the spatially‐discrete Euler and Navier–Stokes equations and shown to converge rapidly to steady states, with maximum Courant number exceeding 100 for the linearized version. Even on relatively coarse grids, the acoustics–convection upstream resolution algorithm generates essentially non‐oscillatory solutions for subsonic, transonic and supersonic flows, encompassing oblique‐ and interacting‐shock fields that converge within 40 time steps and reflect reference exact solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
We deal with the numerical solution of the non‐stationary compressible Navier–Stokes equations with the aid of the backward difference formula – discontinuous Galerkin finite element method. This scheme is sufficiently stable, efficient and accurate with respect to the space as well as time coordinates. The nonlinear algebraic systems arising from the backward difference formula – discontinuous Galerkin finite element discretization are solved by an iterative Newton‐like method. The main benefit of this paper are residual error estimates that are able to identify the computational errors following from the space and time discretizations and from the inexact solution of the nonlinear algebraic systems. Thus, we propose an efficient algorithm where the algebraic, spatial and temporal errors are balanced. The computational performance of the proposed method is demonstrated by a list of numerical experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the application of radial basis function networks (RBFNs) for solving non‐Newtonian fluid flow problems. Indirect RBFNs, which are based on an integration process, are employed to represent the solution variables; the governing differential equations are discretized by means of point collocation. To enhance numerical stability, stress‐splitting techniques are utilized. The proposed method is verified through the computation of the rectilinear and non‐rectilinear flows in a straight duct and the axisymmetric flow in an undulating tube using Newtonian, power‐law, Criminale–Ericksen–Filbey (CEF) and Oldroyd‐B models. The obtained results are in good agreement with the analytic and benchmark solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A fourth‐order finite‐volume method for solving the Navier–Stokes equations on a mapped grid with adaptive mesh refinement is proposed, implemented, and demonstrated for the prediction of unsteady compressible viscous flows. The method employs fourth‐order quadrature rules for evaluating face‐averaged fluxes. Our approach is freestream preserving, guaranteed by the way of computing the averages of the metric terms on the faces of cells. The standard Runge–Kutta marching method is used for time discretization. Solutions of a smooth flow are obtained in order to verify that the method is formally fourth‐order accurate when applying the nonlinear viscous operators on mapped grids. Solutions of a shock tube problem are obtained to demonstrate the effectiveness of adaptive mesh refinement in resolving discontinuities. A Mach reflection problem is solved to demonstrate the mapped algorithm on a non‐rectangular physical domain. The simulation is compared against experimental results. Future work will consider mapped multiblock grids for practical engineering geometries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A comparative study of the bi‐linear and bi‐quadratic quadrilateral elements and the quadratic triangular element for solving incompressible viscous flows is presented. These elements make use of the stabilized finite element formulation of the Galerkin/least‐squares method to simulate the flows, with the pressure and velocity fields interpolated with equal orders. The tangent matrices are explicitly derived and the Newton–Raphson algorithm is employed to solve the resulting nonlinear equations. The numerical solutions of the classical lid‐driven cavity flow problem are obtained for Reynolds numbers between 1000 and 20 000 and the accuracy and converging rate of the different elements are compared. The influence on the numerical solution of the least square of incompressible condition is also studied. The numerical example shows that the quadratic triangular element exhibits a better compromise between accuracy and converging rate than the other two elements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The study of axisymmetric flows is of interest not only from an academic point of view, due to the existence of exact solutions of Navier–Stokes equations, but also from an industrial point of view, since these kind of flows are frequently found in several applications. In the present work the development and implementation of a finite element algorithm to solve Navier–Stokes equations with axisymmetric geometry and boundary conditions is presented. Such algorithm allows the simulation of flows with tangential velocity, including free surface flows, for both laminar and turbulent conditions. Pseudo‐concentration technique is used to model the free surface (or the interface between two fluids) and the k–ε model is employed to take into account turbulent effects. The finite element model is validated by comparisons with analytical solutions of Navier–Stokes equations and experimental measurements. Two different industrial applications are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd.  相似文献   

18.
We report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two‐dimensional compressible inviscid flows. The starting point is a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi‐discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo‐time step requires the solution of a sparse linear system for the flow variables. In this study, a non‐overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow us to express the domain decomposition algorithm as a Richardson‐type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
We present special Newton‐multigrid techniques for stationary incompressible nonlinear flow models discretized by the high order LBB‐stable Q2P1 element pair. We treat the resulting nonlinear and the corresponding linear discrete systems by a fully coupled monolithic approach to maintain high accuracy and robustness, particularly with respect to different rheological behaviors and also regarding different problem sizes and types of nonlinearity. Here, local pressure Schur complement techniques are presented as a generalization of the classical Vanka smoother. The discussed methodology is implemented for the well‐known flow around cylinder benchmark configuration for generalized Newtonian as well as non‐Newtonian flows including non‐isothermal, shear/pressure dependent and viscoelastic effects.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号