首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a new discontinuous Galerkin finite element method for the numerical solution of flow problems with discontinuities is presented. The method is based on the limitation in every cell of the difference between the extrema values and the mean value of the numerical solution. The algorithm and technical details for the implementation of the method are presented in one‐and two‐dimensional problems. Numerical experiments for classical test problems are solved on unstructured triangulations to demonstrate the performance of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
An adaptive spectral/hp discontinuous Galerkin method for the two‐dimensional shallow water equations is presented. The model uses an orthogonal modal basis of arbitrary polynomial order p defined on unstructured, possibly non‐conforming, triangular elements for the spatial discretization. Based on a simple error indicator constructed by the solutions of approximation order p and p?1, we allow both for the mesh size, h, and polynomial approximation order to dynamically change during the simulation. For the h‐type refinement, the parent element is subdivided into four similar sibling elements. The time‐stepping is performed using a third‐order Runge–Kutta scheme. The performance of the hp‐adaptivity is illustrated for several test cases. It is found that for the case of smooth flows, p‐adaptivity is more efficient than h‐adaptivity with respect to degrees of freedom and computational time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we present a SIMPLE based algorithm in the context of the discontinuous Galerkin method for unsteady incompressible flows. Time discretization is done fully implicit using backward differentiation formulae (BDF) of varying order from 1 to 4. We show that the original equation for the pressure correction can be modified by using an equivalent operator stemming from the symmetric interior penalty (SIP) method leading to a reduced stencil size. To assess the accuracy as well as the stability and the performance of the scheme, three different test cases are carried out: the Taylor vortex flow, the Orr‐Sommerfeld stability problem for plane Poiseuille flow and the flow past a square cylinder. (1) Simulating the Taylor vortex flow, we verify the temporal accuracy for the different BDF schemes. Using the mixed‐order formulation, a spatial convergence study yields convergence rates of k + 1 and k in the L2‐norm for velocity and pressure, respectively. For the equal‐order formulation, we obtain approximately the same convergence rates, while the absolute error is smaller. (2) The stability of our method is examined by simulating the Orr–Sommerfeld stability problem. Using the mixed‐order formulation and adjusting the penalty parameter of the symmetric interior penalty method for the discretization of the viscous part, we can demonstrate the long‐term stability of the algorithm. Using pressure stabilization the equal‐order formulation is stable without changing the penalty parameter. (3) Finally, the results for the flow past a square cylinder show excellent agreement with numerical reference solutions as well as experiments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A discontinuous Galerkin method for the solution of the immiscible and incompressible two‐phase flow problem based on the nonsymmetric interior penalty method is presented. Therefore, the incompressible Navier–Stokes equation is solved for a domain decomposed into two subdomains with different values of viscosity and density as well as a singular surface tension force. On the basis of a piecewise linear approximation of the interface, meshes for both phases are cut out of a structured mesh. The discontinuous finite elements are defined on the resulting Cartesian cut‐cell mesh and may therefore approximate the discontinuities of the pressure and the velocity derivatives across the interface with high accuracy. As the mesh resolves the interface, regularization of the density and viscosity jumps across the interface is not required. This preserves the local conservation property of the velocity field even in the vicinity of the interface and constitutes a significant advantage compared with standard methods that require regularization of these discontinuities and cannot represent the jumps and kinks in pressure and velocity. A powerful subtessellation algorithm is incorporated to allow the usage of standard time integrators (such as Crank–Nicholson) on the time‐dependent mesh. The presented discretization is applicable to both the two‐dimensional and three‐dimensional cases. The performance of our approach is demonstrated by application to a two‐dimensional benchmark problem, allowing for a thorough comparison with other numerical methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Three Galerkin methods—continuous Galerkin, Compact Discontinuous Galerkin, and hybridizable discontinuous Galerkin—are compared in terms of performance and computational efficiency in 2‐D scattering problems for low and high‐order polynomial approximations. The total number of DOFs and the total runtime are used for this correlation as well as the corresponding precision. The comparison is carried out through various numerical examples. The superior performance of high‐order elements is shown. At the same time, similar capabilities are shown for continuous Galerkin and hybridizable discontinuous Galerkin, when high‐order elements are adopted, both of them clearly outperforming compact discontinuous Galerkin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Discontinuous Galerkin (DG) methods allow high‐order flow solutions on unstructured or locally refined meshes by increasing the polynomial degree and using curved instead of straight‐sided elements. DG discretizations with higher polynomial degrees must, however, be stabilized in the vicinity of discontinuities of flow solutions such as shocks. In this article, we device a consistent shock‐capturing method for the Reynolds‐averaged Navier–Stokes and kω turbulence model equations based on an artificial viscosity term that depends on element residual terms. Furthermore, the DG method is combined with a residual‐based adaptation algorithm that targets at resolving all flow features. The higher‐order and adaptive DG method is applied to a fully turbulent transonic flow around the second Vortex Flow Experiment (VFE‐2) configuration with a good resolution of the vortex system.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The foundations of a new discontinuous Galerkin method for simulating compressible viscous flows with shocks on standard unstructured grids are presented in this paper. The new method is based on a discontinuous Galerkin formulation both for the advective and the diffusive contributions. High‐order accuracy is achieved by using a recently developed hierarchical spectral basis. This basis is formed by combining Jacobi polynomials of high‐order weights written in a new co‐ordinate system. It retains a tensor‐product property, and provides accurate numerical quadrature. The formulation is conservative, and monotonicity is enforced by appropriately lowering the basis order and performing h‐refinement around discontinuities. Convergence results are shown for analytical two‐ and three‐dimensional solutions of diffusion and Navier–Stokes equations that demonstrate exponential convergence of the new method, even for highly distorted elements. Flow simulations for subsonic, transonic and supersonic flows are also presented that demonstrate discretization flexibility using hp‐type refinement. Unlike other high‐order methods, the new method uses standard finite volume grids consisting of arbitrary triangulizations and tetrahedrizations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper an algebraic model from the constitutive equations of the subgrid stresses has been developed. This model has an additional term in comparison with the mixed model, which represents the backscatter of energy explicitly. The proposed model thus provides independent modelling of the different energy transfer mechanisms, thereby capturing the effect of subgrid scales more accurately. The model is also found to depict the flow anisotropy better than the linear and mixed models. The energy transfer capability of the model is analysed for the isotropic decay and the forced isotropic turbulence. The turbulent plane channel flow simulation is performed over three Reynolds numbers, Reτ=180, 395 and 590, and the results are compared with that of the dynamic model, Smagorinsky model, and the DNS data. Both the algebraic and dynamic models are in good agreement with the DNS data for the mean flow quantities. However, the algebraic model is found to be more accurate for the turbulence intensities and the higher‐order statistics. The capability of the algebraic model to represent backscatter is also demonstrated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a high‐order DG method coupled with a modified extended backward differentiation formulae (MEBDF) time integration scheme is proposed for the solution of unsteady compressible flows. The objective is to assess the performance and the potential of the temporal scheme and to investigate its advantages with respect to the second‐order BDF. Furthermore, a strategy to adapt the time step and the order of the temporal scheme based on the local truncation error is considered. The proposed DG‐MEBDF method has been evaluated for three unsteady test cases: (i) the convection of an inviscid isentropic vortex; (ii) the laminar flow around a cylinder; and (iii) the subsonic turbulent flow through a turbine cascade. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, a hybridizable discontinuous Galerkin method is presented for solving the incompressible Navier–Stokes equation. In our formulation, the convective part is linearized using a Picard iteration, for which there exists a necessary criterion for convergence. We show that our novel hybridized implementation can be used as an alternative method for solving a range of problems in the field of incompressible fluid dynamics. We demonstrate this by comparing the performance of our method with standard finite volume solvers, specifically the well‐established finite volume method of second order in space, such as the icoFoam and simpleFoam of the OpenFOAM package for three typical fluid problems. These are the Taylor–Green vortex, the 180‐degree fence case and the DFG benchmark. Our careful comparison yields convincing evidence for the use of hybridizable discontinuous Galerkin method as a competitive alternative because of their high accuracy and better stability properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high‐order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high‐order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The time‐related element‐free Taylor–Galerkin method with non‐splitting decoupling process (EFTG‐NSD) is proposed for the simulation of steady flows. The goal of the present paper is twofold. One is to raise the efficiency of the time‐related methods for solving steady flow problems, and the other is to obtain a good stability. The EFTG‐NSD method, which uses the time‐related Navier–Stokes equations to describe steady flows, does not care about the intermediate process and obtains solution of steady flows through time marching. Different from the classical time‐related fractional step methods, the EFTG‐NSD method decouples the Navier–Stokes equations without any operator‐splitting and correction. Because the elimination of correction at each iteration step reduces the computation cost, the EFTG‐NSD method possesses higher computation efficiency. In addition, the EFTG‐NSD method has a good stability due to the use of the Taylor–Galerkin formula in time and space discretization. Furthermore, the method combining element‐free Galerkin method with Taylor–Galerkin method is an important supplement of the element‐free Galerkin method for solving flow problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐order accurate, finite‐difference method for the numerical solution of incompressible flows is presented. This method is based on the artificial compressibility formulation of the incompressible Navier–Stokes equations. Fourth‐ or sixth‐order accurate discretizations of the metric terms and the convective fluxes are obtained using compact, centred schemes. The viscous terms are also discretized using fourth‐order accurate, centred finite differences. Implicit time marching is performed for both steady‐state and time‐accurate numerical solutions. High‐order, spectral‐type, low‐pass, compact filters are used to regularize the numerical solution and remove spurious modes arising from unresolved scales, non‐linearities, and inaccuracies in the application of boundary conditions. The accuracy and efficiency of the proposed method is demonstrated for test problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
This article presents a novel shock‐capturing technique for the discontinuous Galerkin (DG) method. The technique is designed for compressible flow problems, which are usually characterized by the presence of strong shocks and discontinuities. The inherent structure of standard DG methods seems to suggest that they are especially adapted to capture shocks because of the numerical fluxes based on suitable approximate Riemann solvers, which, in practice, introduces some stabilization. However, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for large high‐order elements. Here, a new basis of shape functions is introduced. It has the ability to change locally between a continuous or discontinuous interpolation depending on the smoothness of the approximated function. In the presence of shocks, the new discontinuities inside an element introduce the required stabilization because of numerical fluxes. Large high‐order elements can therefore be used and shocks captured within a single element, avoiding adaptive mesh refinement and preserving the locality and compactness of the DG scheme. Several numerical examples for transonic and supersonic flows are studied to demonstrate the applicability of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
We show that recently studied discontinuous Galerkin discretizations in their lowest order version are very similar to the marker and cell (MAC) finite difference scheme. Indeed, applying a slight modification, the exact MAC scheme can be recovered. Therefore, the analysis applied to the DG methods applies to the MAC scheme as well and the DG methods provide a natural generalization of the MAC scheme to higher order and irregular meshes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A p‐adaptive hybridizable discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high‐order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, whereas the particular choice of the numerical fluxes opens the path to a superconvergent postprocessed solution. This superconvergent postprocessed solution is used to construct a simple and inexpensive error estimator. The error estimator is employed to obtain solutions with the prescribed accuracy in the area (or areas) of interest and also drives a proposed iterative mesh adaptation procedure. The proposed method is applied to a nonhomogeneous scattering problem in an unbounded domain. This is a challenging problem because, on the one hand, for high frequencies, numerical difficulties are an important issue because of the loss of the ellipticity and the oscillatory behavior of the solution. And on the other hand, it is applied to real harbor agitation problems. That is, the mild slope equation in frequency domain (Helmholtz equation with nonconstant coefficients) is solved on real geometries with the corresponding perfectly matched layer to damp the diffracted waves. The performance of the method is studied on two practical examples. The adaptive hybridizable discontinuous Galerkin method exhibits better efficiency compared with a high‐order continuous Galerkin method using static condensation of the interior nodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the second validation step of a compressible discontinuous Galerkin solver with symmetric interior penalty (DGM/SIP) for the direct numerical simulation (DNS) and the large eddy simulation (LES) of complex flows. The method has already been successfully validated for DNS of an academic flow and has been applied to flows around complex geometries (e.g. airfoils and turbomachinery blades). During these studies, the advantages of the dissipation properties of the method have been highlighted, showing a natural tendency to dissipate only the under‐resolved scales (i.e the smallest scales present on the mesh), leaving the larger scales unaffected. This phenomenon is further enhanced as the polynomial order is increased. Indeed, the order increases the dissipation at the largest wave numbers, while its range of impact is reduced. These properties are spectrally compatible with a subgrid‐scale model, and hence DGM may be well suited to be used for an implicit LES (ILES) approach. A validation of this DGM/ILES approach is here investigated on canonical flows, allowing to study the impact of the discretisation on the turbulence for under‐resolved computations. The first test case is the LES of decaying homogeneous isotropic turbulence (HIT) at very high Reynolds number. This benchmark allows to assess the spectral behaviour of the method for implicit LES. The results are in agreement with theory and are even slightly more accurate than other numerical results from literature, obtained using a pseudo‐spectral (PS) method with a state‐of‐the‐art subgrid‐scale model. The second benchmark is the LES of the channel flow. Three Reynolds numbers are considered: Reτ=395, 590 and 950. The results are compared with DNS of Moser et al. and Hoyas et al., also using PS methods. Both averaged velocity and fluctuations are globally in good agreement with the reference, showing the ability of the method to predict equilibrium wall‐bounded flow turbulence. To show that the method is able to perform accurate DNS, a DNS of HIT at Reλ=64 and a DNS of the channel flow at Reτ=180 are also performed. The effects of the grid refinement are investigated on the channel flow at Reτ=395, highlighting the improvement of the results when refining the mesh in the spanwise direction. Finally, the modification of the ILES parameters, that is the Riemann solver and of the SIP coefficient, is studied on both cases, showing a significant influence on the choice of the Riemann solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
在二维、三维非结构网榕上,针对间断Galerkin方法计算量大、收敛慢的缺点将p型多重网格方法应用于该方法求解跨音速Euler方程,提高计算效率。p型多重网格方法是通过对不同阶次多项式近似解进行递归迭代求解,来达到加速收敛。文中对高阶近似(p>0)使用显式格式,最低阶近似(p=0)采用隐式格式。NACA0012翼型和O...  相似文献   

19.
With high‐order methods becoming more widely adopted throughout the field of computational fluid dynamics, the development of new computationally efficient algorithms has increased tremendously in recent years. One of the most recent methods to be developed is the flux reconstruction approach, which allows various well‐known high‐order schemes to be cast within a single unifying framework. Whilst a connection between flux reconstruction and the more widely adopted discontinuous Galerkin method has been established elsewhere, it still remains to fully investigate the explicit connections between the many popular variants of the discontinuous Galerkin method and the flux reconstruction approach. In this work, we closely examine the connections between three nodal versions of tensor‐product discontinuous Galerkin spectral element approximations and two types of flux reconstruction schemes for solving systems of conservation laws on quadrilateral meshes. The different types of discontinuous Galerkin approximations arise from the choice of the solution nodes of the Lagrange basis representing the solution and from the quadrature approximation used to integrate the mass matrix and the other terms of the discretization. By considering both linear and nonlinear advection equations on a regular grid, we examine the mathematical properties that connect these discretizations. These arguments are further confirmed by the results of an empirical numerical study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Discontinuous Galerkin (DG) methods have proven to be perfectly suited for the construction of very high‐order accurate numerical schemes on arbitrary unstructured and possibly nonconforming grids for a wide variety of applications, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods a p‐multigrid solution strategy has been developed, which is based on a semi‐implicit Runge–Kutta smoother for high‐order polynomial approximations and the implicit Backward Euler smoother for piecewise constant approximations. The effectiveness of the proposed approach is demonstrated by comparison with p‐multigrid schemes employing purely explicit smoothing operators for several 2D inviscid test cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号