首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A discontinuous Galerkin method for the solution of the immiscible and incompressible two‐phase flow problem based on the nonsymmetric interior penalty method is presented. Therefore, the incompressible Navier–Stokes equation is solved for a domain decomposed into two subdomains with different values of viscosity and density as well as a singular surface tension force. On the basis of a piecewise linear approximation of the interface, meshes for both phases are cut out of a structured mesh. The discontinuous finite elements are defined on the resulting Cartesian cut‐cell mesh and may therefore approximate the discontinuities of the pressure and the velocity derivatives across the interface with high accuracy. As the mesh resolves the interface, regularization of the density and viscosity jumps across the interface is not required. This preserves the local conservation property of the velocity field even in the vicinity of the interface and constitutes a significant advantage compared with standard methods that require regularization of these discontinuities and cannot represent the jumps and kinks in pressure and velocity. A powerful subtessellation algorithm is incorporated to allow the usage of standard time integrators (such as Crank–Nicholson) on the time‐dependent mesh. The presented discretization is applicable to both the two‐dimensional and three‐dimensional cases. The performance of our approach is demonstrated by application to a two‐dimensional benchmark problem, allowing for a thorough comparison with other numerical methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the way to obtain the Newton gradient by using a traction given by the perturbation for the Lagrange multiplier. Conventionally, the second‐order adjoint model using the Hessian/vector products expressed by the product of the Hessian matrix and the perturbation of the design variables has been researched (Comput. Optim. Appl. 1995; 4 :241–262). However, in case that the boundary value would like to be obtained, this model cannot be applied directly. Therefore, the conventional second‐order adjoint technique is extended to the boundary value determination problem and the second‐order adjoint technique is applied to the conduit flow problem in this paper. As the minimization technique, the Newton‐based method is employed. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is applied to calculate the Hessian matrix which is used in the Newton‐based method and a traction given by the perturbation for the Lagrange multiplier is used in the BFGS method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

5.
The objective of this paper is twofold. First, a stabilized finite element method (FEM) for the incompressible Navier–Stokes is presented and several numerical experiments are conducted to check its performance. This method is capable of dealing with all the instabilities that the standard Galerkin method presents, namely the pressure instability, the instability arising in convection‐dominated situations and the less popular instabilities found when the Navier–Stokes equations have a dominant Coriolis force or when there is a dominant absorption term arising from the small permeability of the medium where the flow takes place. The second objective is to describe a nodal‐based implementation of the finite element formulation introduced. This implementation is based on an a priori calculation of the integrals appearing in the formulation and then the construction of the matrix and right‐hand side vector of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector can be constructed directly for each nodal point, without the need to loop over the elements, thus making the calculations much faster. In order to be able to do this, all the variables have to be defined at the nodes of the finite element mesh, not on the elements. This is also so for the stabilization parameters of the formulation. However, doing this gives rise to questions regarding the consistency and the conservation properties of the final scheme, which are addressed in this paper. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
We present a novel approach to wall modeling for the Reynolds‐averaged Navier‐Stokes equations within the discontinuous Galerkin method. Wall functions are not used to prescribe boundary conditions as usual, but they are built into the function space of the numerical method as a local enrichment, in addition to the standard polynomial component. The Galerkin method then automatically finds the optimal solution among all shape functions available. This idea is fully consistent and gives the wall model vast flexibility in separated boundary layers or high adverse pressure gradients. The wall model is implemented in a high‐order discontinuous Galerkin solver for incompressible flow complemented by the Spalart‐Allmaras closure model. As benchmark examples, we present turbulent channel flow starting from Reτ=180 and up to Reτ=100000 as well as flow past periodic hills at Reynolds numbers based on the hill height of ReH=10595 and ReH=19000.  相似文献   

8.
A comparative study of the bi‐linear and bi‐quadratic quadrilateral elements and the quadratic triangular element for solving incompressible viscous flows is presented. These elements make use of the stabilized finite element formulation of the Galerkin/least‐squares method to simulate the flows, with the pressure and velocity fields interpolated with equal orders. The tangent matrices are explicitly derived and the Newton–Raphson algorithm is employed to solve the resulting nonlinear equations. The numerical solutions of the classical lid‐driven cavity flow problem are obtained for Reynolds numbers between 1000 and 20 000 and the accuracy and converging rate of the different elements are compared. The influence on the numerical solution of the least square of incompressible condition is also studied. The numerical example shows that the quadratic triangular element exhibits a better compromise between accuracy and converging rate than the other two elements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
10.
An analysis of the flow of a second‐order fluid is presented. Reference values for some variables are defined, and with these a non‐dimensional formulation of the governing equations. From this formulation, three dimensionless numbers appear; one is the Reynolds number, and two numbers that are called the first‐ and second‐dimensionless normal stress (NSD) coefficients. The equations of motion are solved by a finite element method using a commercially available program (Fidap), and the steady state converged solution was used to measure the die swell. The factors that influence die swell and that are studied in this work include: the die geometry for circular cross sectional dies, including tubular, converging, diverging, half‐converging/half‐tubular shapes; fluid characteristics such as Reynolds number and first‐ and second‐DNS coefficients (both positive and negative values); and flow rates, as determined by the maximum velocity in a parabolic velocity profile at the entrance to the die. The results suggest that shear and deformation histories of the fluid directly influence not only swell characteristics, but also convergence characteristics of the numerical simulation. © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
We deal with the numerical solution of the non‐stationary compressible Navier–Stokes equations with the aid of the backward difference formula – discontinuous Galerkin finite element method. This scheme is sufficiently stable, efficient and accurate with respect to the space as well as time coordinates. The nonlinear algebraic systems arising from the backward difference formula – discontinuous Galerkin finite element discretization are solved by an iterative Newton‐like method. The main benefit of this paper are residual error estimates that are able to identify the computational errors following from the space and time discretizations and from the inexact solution of the nonlinear algebraic systems. Thus, we propose an efficient algorithm where the algebraic, spatial and temporal errors are balanced. The computational performance of the proposed method is demonstrated by a list of numerical experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We describe some Hermite stream function and velocity finite elements and a divergence‐free finite element method for the computation of incompressible flow. Divergence‐free velocity bases defined on (but not limited to) rectangles are presented, which produce pointwise divergence‐free flow fields (∇· u h≡0). The discrete velocity satisfies a flow equation that does not involve pressure. The pressure can be recovered as a function of the velocity if needed. The method is formulated in primitive variables and applied to the stationary lid‐driven cavity and backward‐facing step test problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A finite element method for quasi‐incompressible viscous flows is presented. An equation for pressure is derived from a second‐order time accurate Taylor–Galerkin procedure that combines the mass and the momentum conservation laws. At each time step, once the pressure has been determined, the velocity field is computed solving discretized equations obtained from another second‐order time accurate scheme and a least‐squares minimization of spatial momentum residuals. The terms that stabilize the finite element method (controlling wiggles and circumventing the Babuska–Brezzi condition) arise naturally from the process, rather than being introduced a priori in the variational formulation. A comparison between the present second‐order accurate method and our previous first‐order accurate formulation is shown. The method is also demonstrated in the computation of the leaky‐lid driven cavity flow and in the simulation of a crossflow past a circular cylinder. In both cases, good agreement with previously published experimental and computational results has been obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We discuss in this paper some implementation aspects of a finite element formulation for the incompressible Navier–Stokes equations which allows the use of equal order velocity–pressure interpolations. The method consists in introducing the projection of the pressure gradient and adding the difference between the pressure Laplacian and the divergence of this new field to the incompressibility equation, both multiplied by suitable algorithmic parameters. The main purpose of this paper is to discuss how to deal with the new variable in the implementation of the algorithm. Obviously, it could be treated as one extra unknown, either explicitly or as a condensed variable. However, we take for granted that the only way for the algorithm to be efficient is to uncouple it from the velocity–pressure calculation in one way or another. Here we discuss some iterative schemes to perform this uncoupling of the pressure gradient projection (PGP) from the calculation of the velocity and the pressure, both for the stationary and the transient Navier–Stokes equations. In the first case, the strategies analyzed refer to the interaction of the linearization loop and the iterative segregation of the PGP, whereas in the second the main dilemma concerns the explicit or implicit treatment of the PGP. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we demonstrate that some well‐known finite‐difference schemes can be interpreted within the framework of the local discontinuous Galerkin (LDG) methods using the low‐order piecewise solenoidal discrete spaces introduced in (SIAM J. Numer. Anal. 1990; 27 (6): 1466–1485). In particular, it appears that it is possible to derive the well‐known MAC scheme using a first‐order Nédélec approximation on rectangular cells. It has been recently interpreted within the framework of the Raviart–Thomas approximation by Kanschat (Int. J. Numer. Meth. Fluids 2007; published online). The two approximations are algebraically equivalent to the MAC scheme, however, they have to be applied on grids that are staggered on a distance h/2 in each direction. This paper also demonstrates that both discretizations allow for the construction of a divergence‐free basis, which yields a linear system with a ‘biharmonic’ conditioning. Both this paper and Kanschat (Int. J. Numer. Meth. Fluids 2007; published online) demonstrate that the LDG framework can be used to generalize some popular finite‐difference schemes to grids that are not parallel to the coordinate axes or that are unstructured. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
We prove in Theorem 1 a new relationship between the stress, pressure, velocity, and mean curvature for embedded surfaces in incompressible viscous flows. This is then used to define a corresponding modified pressure boundary condition for flow of Newtonian and generalized Newtonian fluids. These results agree with an intuitive notion of the flow physics but apparently have not previously been shown rigorously. We describe some of the implementation issues for inflow and outflow boundaries in this context and give details for a penalty treatment of the associated tangential velocity constraint. This is then implemented and applied in high‐resolution 3D benchmark calculations for a representative generalized viscosity model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of laminar flow simulations at low Mach numbers using an implicit scheme. The algorithm is based on the flux preconditioning approach, which modifies only the dissipative terms of the numerical flux. This formulation is quite simple to implement in existing implicit DG codes, it overcomes the time‐stepping restrictions of explicit multistage algorithms, is consistent in time and thus applicable to unsteady flows. The performance of the method is demonstrated by solving the flow around a NACA0012 airfoil and on a flat plate, at different low Mach numbers using various degrees of polynomial approximations. Computations with and without flux preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers. The time accurate solution of unsteady flow is also demonstrated by solving the vortex shedding behind a circular cylinder at the Reynolds number of 100. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we focus on the applicability of spectral‐type collocation discontinuous Galerkin methods to the steady state numerical solution of the inviscid and viscous Navier–Stokes equations on meshes consisting of curved quadrilateral elements. The solution is approximated with piecewise Lagrange polynomials based on both Legendre–Gauss and Legendre–Gauss–Lobatto interpolation nodes. For the sake of computational efficiency, the interpolation nodes can be used also as quadrature points. In this case, however, the effect of the nonlinearities in the equations and/or curved elements leads to aliasing and/or commutation errors that may result in inaccurate or unstable computations. By a thorough numerical testing on a set of well known test cases available in the literature, it is here shown that the two sets of nodes behave very differently, with a clear advantage of the Legendre–Gauss nodes, which always displayed an accurate and robust behaviour in all the test cases considered.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号