首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work presents a mixed three‐dimensional finite element formulation for analyzing compressible viscous flows. The formulation is based on the primitive variables velocity, density, temperature and pressure. The goal of this work is to present a ‘stable’ numerical formulation, and, thus, the interpolation functions for the field variables are chosen so as to satisfy the inf–sup conditions. An exact tangent stiffness matrix is derived for the formulation, which ensures a quadratic rate of convergence. The good performance of the proposed strategy is shown in a number of steady‐state and transient problems where compressibility effects are important such as high Mach number flows, natural convection, Riemann problems, etc., and also on problems where the fluid can be treated as almost incompressible. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J‐G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher‐order) finite elements. This method can achieve high‐order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
In this work the capabilities of a high-order Discontinuous Galerkin (DG) method applied to the computation of turbomachinery flows are investigated. The Reynolds averaged Navier–Stokes equations coupled with the two equations k-ω turbulence model are solved to predict the flow features, either in a fixed or rotating reference frame, to simulate the fluid flow around bodies that operate under an imposed steady rotation. To ensure, by design, the positivity of all thermodynamic variables at a discrete level, a set of primitive variables based on pressure and temperature logarithms is used. The flow fields through the MTU T106A low-pressure turbine cascade and the NASA Rotor 37 axial compressor have been computed up to fourth-order of accuracy and compared to the experimental and numerical data available in the literature.  相似文献   

4.
The modeling of traffic flow is a key tool to simulate and predict the behavior of traffic systems. Macroscopic traffic simulation models are based on advection dominated coupled non-linear partial differential equations. The solution of such advection dominated equations with the method of finite elements is leading to the development of stabilization techniques. The choice of suitable stabilization parameters is often application-dependent. A stabilized finite element procedure on the basis of a Galerkin/least-square approximation is presented for systems of transient advection-dominated equations. A general rule for computing suitable element stabilization parameters is outlined which uses the spectral radius of the differential operators and the specific element expansion. The application of this approximation to a macroscopic traffic model shows the applicability of this approach. Simulation results of typical phenomena of jam formation in freeway traffic are presented.  相似文献   

5.
A new method based on the anisotropic tensor force finite element and Taylor-Galerkin finite element is presented in the present paper. Its application to two-dimensional viscous transonic flow in turbomachinery improves the convergence rate and stability of calculation, and the results obtained agree well with the experimental measurements.  相似文献   

6.
A cell‐vertex hybrid finite volume/element method is investigated that is implemented on triangles and applied to the numerical solution of Oldroyd model fluids in contraction flows. Particular attention is paid to establishing high‐order accuracy, whilst retaining favourable stability properties. Elevated levels of elasticity are sought. The main impact of this study reveals that switching from quadratic to linear finite volume stress representation with discontinuous stress gradients, and incorporating local reduced quadrature at the re‐entrant corner, provide enhance stability properties. Solution smoothness is achieved by adopting the non‐conservative flux form with area integration, by appealing to quadratic recovered velocity‐gradients, and through consistency considerations in the treatment of the time term in the constitutive equation. In this manner, high‐order accuracy is maintained, stability is ensured, and the finer features of the flow are confirmed via mesh refinement. Lip vortices are observed for We>1, and a trailing‐edge vortex is also apparent. Loss of evolution and solution asymptotic behaviour towards the re‐entrant corner are also discussed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
A moving discontinuous Galerkin finite element method with interface condition enforcement is formulated for flows with discontinuous interfaces. The underlying weak formulation enforces the interface condition separately from the conservation law, so that the residual only vanishes upon satisfaction of both. In this formulation, the discrete grid geometry is treated as a variable, so that, in contrast to the standard discontinuous Galerkin method, this method has both the means to detect interfaces, via interface condition enforcement, and to satisfy, via grid movement, the conservation law and its associated interface condition. The method therefore directly fits interfaces, including shocks, preserving a high-order representation up to the interface without requiring shock capturing or an upwind numerical flux to achieve stability. It can be generalized to flows with a priori unknown interfaces with nontrivial topology and curved interface geometry as well as to an arbitrary number of spatial dimensions. Unsteady flows are represented in a manner similar to steady flows using a space-time formulation. In addition to computing flows with interfaces, the method can represent point singularities in a flow field by degenerating cuboid elements. In general, the method works in conjunction with standard local grid operations, including edge collapse, to ensure that degenerate cells are removed. Test cases are presented for up to three-dimensional flows that provide an initial assessment of the stability and accuracy of the method.  相似文献   

8.
In this paper, a numerical method, which is about the coupling of continuous and discontinuous Galerkin method based on the splitting scheme, is presented for the calculation of viscoelastic flows of the Oldroyd‐B fluid. The momentum equation is discretized in time by using the Adams‐Bashforth second‐order algorithm, and then decoupled via the splitting approach. Considering the Oldroyd‐B constitutive equation, the second‐order Runge‐Kutta approach is selected to complete the temporal discretization. As for the spatial discretizations, the fundamental purpose is to make the best of finite element method (FEM) and discontinuous Galerkin (DG) method to handle different types of equations. Specifically speaking, for the subequations, FEM is chosen to treat the Poisson and Helmholtz equations, and DG is employed to deal with the nonlinear convective term. In addition, because of the hyperbolic nature, DG is also utilized to discretize the Oldroyd‐B constitutive equation spatially. This coupled method avoids resorting to extra stabilization technique occurred in standard FEM framework even for moderately high values of Weissenberg number and also reduces the complexity compared with unified DG scheme. The Oldroyd‐B model is applied to investigate several typical and challenging benchmarks, such as the 4:1 planar contraction flow and the lid‐driven cavity flow, with a wide range of Weissenberg number to illustrate the feasibility, robustness, and validity of our coupled method.  相似文献   

9.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The time-dependent Navier–Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity–pressure–vorticity–temperature–heat-flux ( u –P–ω–T– q ) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.  相似文献   

11.
A novel control volume finite element method with adaptive anisotropic unstructured meshes is presented for three-dimensional three-phase flows with interfacial tension. The numerical framework consists of a mixed control volume and finite element formulation with a new P1DG-P2 elements (linear discontinuous velocity between elements and quadratic continuous pressure between elements). A “volume of fluid” type method is used for the interface capturing, which is based on compressive control volume advection and second-order finite element methods. A force-balanced continuum surface force model is employed for the interfacial tension on unstructured meshes. The interfacial tension coefficient decomposition method is also used to deal with interfacial tension pairings between different phases. Numerical examples of benchmark tests and the dynamics of three-dimensional three-phase rising bubble, and droplet impact are presented. The results are compared with the analytical solutions and previously published experimental data, demonstrating the capability of the present method.  相似文献   

12.
In this paper, the newly developed lattice Boltzmann flux solver (LBFS) is developed into a version in the rotating frame of reference for simulation of turbomachinery flows. LBFS is a finite volume solver for the solution of macroscopic governing differential equations. Unlike conventional upwind or Godunov‐type flux solvers which are constructed by considering the mathematical properties of Euler equations, it evaluates numerical fluxes at the cell interface by reconstructing local solution of lattice Boltzmann equation (LBE). In other words, the numerical fluxes are physically determined rather than by some mathematical approximation. The LBE is herein expressed in a relative frame of reference in order to correctly recover the macroscopic equations, which is also the basis of LBFS. To solve the LBE, an appropriate lattice Boltzmann model needs to be established in advance. This includes both the determinations of the discrete velocity model and its associated equilibrium distribution functions. Particularly, a simple and effective D1Q4 model is adopted, and the equilibrium distribution functions could be efficiently obtained by using the direct method. The present LBFS is validated by several inviscid and viscous test cases. The numerical results demonstrate that it could be well applied to typical and complex turbomachinery flows with favorable accuracy. It is also shown that LBFS has a delicate dissipation mechanism and is thus free of some artificial fixes, which are often needed in conventional schemes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the cell‐based smoothed finite element method (CS‐FEM) with the semi‐implicit characteristic‐based split (CBS) scheme (CBS/CS‐FEM) is proposed for computational fluid dynamics. The 3‐node triangular (T3) element and 4‐node quadrilateral (Q4) element are used for present CBS/CS‐FEM for two‐dimensional flows. The 8‐node hexahedral element (H8) is used for three‐dimensional flows. Two types of CS‐FEM are implemented in this paper. One is standard CS‐FEM with quadrilateral gradient smoothing cells for Q4 element and hexahedron cells for H8 element. Another is called as n‐sided CS‐FEM (nCS‐FEM) whose gradient smoothing cells are triangles for Q4 element and pyramids for H8 element. To verify the proposed methods, benchmarking problems are tested for two‐dimensional and three‐dimensional flows. The benchmarks show that CBS/CS‐FEM and CBS/nCS‐FEM are capable to solve incompressible laminar flow and can produce reliable results for both steady and unsteady flows. The proposed CBS/CS‐FEM method has merits on better robustness against distorted mesh with only slight more computation time and without losing accuracy, which is important for problems with heavy mesh distortion. The blood flow in carotid bifurcation is also simulated to show capabilities of proposed methods for realistic and complicated flow problems.  相似文献   

14.
15.
In this paper, we report our development of an implicit hybrid flow solver for the incompressible Navier–Stokes equations. The methodology is based on the pressure correction or projection method. A fractional step approach is used to obtain an intermediate velocity field by solving the original momentum equations with the matrix‐free implicit cell‐centred finite volume method. The Poisson equation derived from the fractional step approach is solved by the node‐based Galerkin finite element method for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to update the velocity field and the pressure field. We store the velocity components at cell centres and the auxiliary variable at cell vertices, making the current solver a staggered‐mesh scheme. Numerical examples demonstrate the performance of the resulting hybrid scheme, such as the correct temporal convergence rates for both velocity and pressure, absence of unphysical pressure boundary layer, good convergence in steady‐state simulations and capability in predicting accurate drag, lift and Strouhal number in the flow around a circular cylinder. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
An implicit hybrid finite element (FE)/volume solver has been extended to incompressible flows coupled with the energy equation. The solver is based on the segregated pressure correction or projection method on staggered unstructured hybrid meshes. An intermediate velocity field is first obtained by solving the momentum equations with the matrix-free implicit cell-centred finite volume (FV) method. The pressure Poisson equation is solved by the node-based Galerkin FE method for an auxiliary variable. The auxiliary variable is used to update the velocity field and the pressure field. The pressure field is carefully updated by taking into account the velocity divergence field. Our current staggered-mesh scheme is distinct from other conventional ones in that we store the velocity components at cell centres and the auxiliary variable at vertices. The Generalized Minimal Residual (GMRES) matrix-free strategy is adapted to solve the governing equations in both FE and FV methods. The presented 2D and 3D numerical examples show the robustness and accuracy of the numerical method.  相似文献   

17.
This paper presents a simple finite element method for Stokes flows with surface tension. The method uses an unfitted mesh that is independent of the interface. Due to the surface force, the pressure has a jump across the interface. Based on the properties of the level set function that implicitly represents the interface, the jump of the pressure is removed, and a new problem without discontinuities is formulated. Then, classical stable finite element methods are applied to solve the new problem. Some techniques are used to show that the method is equivalent to an easy‐to‐implement method that can be regarded as a traditional method with a modified pressure space. However, the matrix of the resulting linear system of equations is the same as that of the traditional method. Optimal error estimates are derived for the proposed method. Finally, some numerical tests are presented to confirm the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We consider the numerical simulation of conjugate heat transfer, incompressible turbulent flows for multicomponents systems using a stabilized finite element method. We present an immersed volume approach for thermal coupling between fluids and solids for heating high‐alloy steel inside industrial furnaces. It consists in considering a single 3D grid of the furnace and solving one set of equations with different thermal properties. A distance function enables to define precisely the position and the interface of any objects inside the volume and to provide homogeneous physical and thermodynamic properties for each subdomain. An anisotropic mesh adaptation algorithm based on the variations of the distance function is then applied to ensure an accurate capture of the discontinuities that characterize the highly heterogeneous domain. The proposed method demonstrates the capability of the model to simulate an unsteady three‐dimensional heat transfers and turbulent flows in an industrial furnace with the presence of three conducting solid bodies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A finite element method for the simulation of viscoelastic flows has been developed. It uses a weak formulation of the method of characteristics to treat the viscoelastic constitutive law. Numerical results in a 4:1 contraction are presented and are discussed with respect to previous computations. New phenomena are put in evidence and new questions are opened in this already controversial problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号