首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超声速等离子体射流的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
基于可压缩的全Naiver-Stokes方程,利用PHOENICS程序对由会聚 辐射阳极形状等离子体炬产生的超声速等离子体射流进行了数值模拟.考虑了等离子体的黏性、可压缩性以及变物性对等离子体射流特性影响.研究了超声速等离子体射流的流场结构特性以及不同环境压力对等离子体射流产生激波结构的影响.结果表明,超声速等离子体射流在喷口附近形成的周期性激波结构是其和环境气体相互作用的结果. 关键词: 等离子体炬 超声速等离子体射流 PHOENICS  相似文献   

2.
Velocity and ejection pumping are proposed as novel evacuation techniques to assist the static differential pumping already in use in the environmental scanning electron microscope. The gas velocity (or momentum) that accompanies the supersonic jet stream formed through the first pressure limiting aperture is used to initially force the gas out of the system by placing the second pressure limiting aperture at an optimum position in the gaseous jet. By this method, the gaseous particle thickness between the two apertures is minimised and the required pumping speed of the first evacuation stage is also reduced to an absolute minimum. A further improvement is achieved by inserting an appropriately shaped baffle between the two apertures, which shields the second aperture from the gas jet of the first and acts as an ejector-jet pump. The gas leak rate through the second aperture is maintained at an acceptable low level by both systems, even below the static leak rate level when the ejector-jet design is used, in particular. The result of either method has a double benefit, namely, the electron beam loss in the intermediate pumping stage is minimised together with a reduction of pump speed requirements. This translates to best instrument performance and minimal manufacturing costs.  相似文献   

3.
A simplified one-dimensional model was proposed to treat the gas dynamic problems in a supersonic jet, which was used to produce radicals cooled by supersonic expansion, Based on this model, the gas dynamic equations can be integrated directly to obtain the evolution or the translational temperature and the rotational temperature of free radicals as well as the molecule density. The results show that the heating position where the radicals are generated and the initial rotational temperature of radicals have little effect on the rotational temperature at the down stream detection point, if the heating position is close to the nozzle orifice.  相似文献   

4.
分析了超音速射流由于高速相对运动产生多普勒谱线漂移效应对光辐射特性计算的影响。通过采用逐线计算法对不同环境压力、气流温度、气流速度条件下超音速燃气射流在不同的红外光谱区(2.7微米谱带和4.3微米谱带)光辐射谱带积分强度的计算结果比较表明:多普勒漂移效应受环境总压影响最大,压力越大多普勒漂移的影响越小;随着温度升高多普勒漂移效应的影响降低;随着相对速度的增加,多普勒漂移效应的影响多数情况下是增加的。  相似文献   

5.
We report an experimental study of ignition of flammable mixtures by highly unexpanded, supersonic hot jets. The high-pressure, hot-gas reservoir supplying the jet is created by impacting a projectile on a plunger to rapidly compress and ignite a rich n-hexane/air mixture, resulting in a peak reservoir pressure of more than 20 MPa. A locking mechanism was used to prevent the plunger from rebounding and the jet was created by rupturing a diaphragm covering a nozzle with an exit diameter between 0.25 and 1 mm. The jet development and ignition processes in the main chamber filled with hexane-air mixture were visualized using high-speed schlieren and OH* chemiluminescence imaging. The ignition threshold was determined as a function of composition in the jet and main chamber, the nozzle diameter, and the initial pressure in the main chamber. Unlike the case of subsonic jets in which ignition occurs at the shear layer near the nozzle exit, ignition of combustion in the main chamber was found to take place downstream of the Mach disk terminating the supersonic expansion and within the turbulent mixing region created by the startup of the supersonic jet. The results are interpreted using a constant-pressure, well-stirred reactor model simulating the mixing between the hot jet and cold ambient gas. The critical conditions for ignition are determined by the competition between energy release due to chemical reactions initiated by the hot jet gas and cooling due to mixing with the cold chamber atmosphere. The critical value (maximum for which ignition occurs) of the mixing rate was computed using a detailed chemical reaction model and found to be a useful qualitative guide to our observations.  相似文献   

6.
袁野  张岩  赵青  黄小平  郭成 《强激光与粒子束》2022,34(6):065003-1-065003-9
为了在高超声速飞行器减阻中达到更好的减阻效果,设计了一种电弧射流等离子体激励器。采用有限元法求解非线性多物理方程,对此电弧射流等离子体激励器的工作特性进行了数值模拟,得到了激励器内部的电势、压力、温度和速度分布,综合分析了进气口气体速度、放电电流、激励器管道半径对电势、压力、温度和速度分布的影响。获得了全面的影响规律,通过仿真结果还得到:电弧射流等离子体激励器可产生最高温度为8638 K、最高速度为655 m/s的等离子体射流。当电流20 A,进气速度0.5 m/s,管道半径2.5 mm时,所需功率最小;当电流20 A,入口气体流速5 m/s,管道半径2.5 mm时,出口处平均温度最高;当电流20 A,进口气体速度10 m/s,管道半径2.5 mm时,出口处平均速度最大。并对仿真得到的放电电压进行了实验验证,在等离子体参数相似的情况下,实验结果与仿真结果吻合较好。  相似文献   

7.
开展了考虑底部发动机喷流影响的火箭气动特性CFD仿真设计,比较了有/无喷流时火箭附近流场结构、表面压力分布、整体气动力/力矩特性在亚/超声速段的差异,结果显示,发动机喷流对火箭亚声速段的轴向力、法向力和俯仰力矩特性均有较为显著的影响,且有减小尾部空气舵气动控制力矩的影响,而超声速段的影响仅限于轴向力。该仿真结果与飞行试验气动辨识结果较为一致。基于仿真分析结果,可建立一种折中考虑喷流影响的气动特性设计方法,供火箭精细化气动特性设计参考使用。   相似文献   

8.
The ideal gas exhaustion from an infinite volume into a gas at rest through a supersonic conical Laval nozzle is considered. The problem was solved numerically by steadying in time in a unified formulation for the regions inside the nozzle and in the ambient environment. In such a statement, the nozzle outlet section is no internal boundary of the region under consideration, and there is no need of specifying the boundary conditions here. Local subsonic zones arising in the flow lie inside the region under consideration, which eliminates the possibility of using a marching technique along one of the coordinates. The numerical solution is constructed by a unified algorithm for the entire flow region, which gives a possibility of obtaining a higher accuracy. The computations are carried out in the jet initial interval, where, according to monograph [1], the wave phenomena predominate over the viscous effects. The exhaustion process is described by the system of gas dynamics equations. Their solution is constructed with the aid of a finite difference Harten’s TVD (Total Variation Diminishing) scheme [2], which has the second approximation order in space. The second approximation order in time is achieved with the aid of a five-stage Runge-Kutta method. The solution algorithm has been parallelized in space and implemented on the multi-processor computer systems of the ITAM SB RAS and the MVS-128 of the Siberian Supercomputer Center of SB RAS. The influence of the semi-apex angle of the nozzle supersonic part and the pressure jump between the nozzle outlet section and the ambient environment on the flow in the initial interval of a non-isobaric jet is investigated in the work. A comparison with experimental data is presented. The computations are carried out for the semi-apex angles of the nozzle supersonic part from 0 (parallel flow) to 20 degrees. For all considered nozzles, the Mach number in the nozzle outlet section, which was computed from the one-dimensional theory, equaled three. Computations showed that in the case of flow acceleration in a conical supersonic nozzle, its geometry is one of the main factors determining the formation of the jet initial interval in ambient environment.  相似文献   

9.
The unsteady, reactive Navier-Stokes equations with a detailed chemical mechanism of 11 species and 27 steps were employed to simulate the mixing, flame acceleration and deflagration-to-detonation transition (DDT) triggered by transverse jet obstacles. Results show that multiple transverse jet obstacles ejecting into the chamber can be used to activate DDT. But the occurrence of DDT is tremendously difficult in a non-uniform supersonic mixture so that it required several groups of transverse jets with increasing stagnation pressure. The jets introduce flow turbulence and produce oblique and bow shock waves even in an inhomogeneous supersonic mixture. The DDT is enhanced by multiple explosion points that are generated by the intense shock wave focusing of the leading flame front. It is found that the partial detonation front decouples into shock and flame, which is mainly caused by the fuel deficiency, nevertheless the decoupled shock wave is strong enough to reignite the mixture to detonation conditions. The resulting transverse wave leads to further mixing and burning of the downstream non-equilibrium chemical reaction, resulting in a high combustion temperature and intense flow instabilities. Additionally, the longitudinal and transverse gradients of the non-uniform supersonic mixture induce highly dynamic behaviors with sudden propagation speed increase and detonation front instabilities.  相似文献   

10.
The paper presents a simple theoretical model of the breakdown of the supersonic plasma jet generated by the hollow cathode discharge inside the nozzle in the low pressure RF plasma-chemical reactor. Through the nozzle which is drilled in the RF electrode the working gas flows to the reactor chamber. If at the outlet of the nozzle the gas flow is supersonic the well defined plasma jet is created inside the reactor chamber. The results of our model are in qualitative agreement with experimental data.  相似文献   

11.
超声速后台阶流动/射流相互作用的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高精度格式求解二维Navier-Stokes方程研究超声速射流与同向超声速后台阶流动相互作用的流场基本结构及规律,分别应用5阶WENO格式、6阶中心差分格式离散对流项和黏性项,时间推进采用3阶Runge-Kutta格式,并应用消息传递接口(message passing interface,MPI)非阻塞式通信实现并行化.分别研究了超声速后台阶流动、超声速射流的基本结构特征,以此讨论和分析超声速后台阶流动/射流相互作用的特征,以及不同来流条件对波系结构、涡结构、剪切层、膨胀扇等的影响,尤其是来流剪切层和射流剪切层的相互作用,形成复杂的波系结构及相互干扰的流动现象.   相似文献   

12.
The gas dynamics of a supersonic radial jet was studied under conditions close to cold spraying. The jet visualization was performed for exhaustion into submerged space with atmospheric pressure and jet impingement to a target. For the cases of swirled and unswirled supersonic radial jets, the pressure profiles measured by a Pitot tube were taken for different distances from the nozzle outlet and for different widths of supersonic part δ ex = 0.5?2 mm and for prechamber pressure in the range p 0 = 1?2.5 MPa.  相似文献   

13.
一种螺旋型Blumlein线的阻抗特性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
提出了一种结构紧凑的长脉冲发生器,该发生器的螺旋型Blumlein线由内导体(含磁体)、螺旋型中筒和外导体(含磁体)构成,该结构实现了螺旋型Blumlein线和Tesla变压器的一体化。通过对螺旋型Blumlein线的波传输过程分析,给出了慢波系数、开关闭合电流、用于描述形成线闭合开关处界面上波行为的变量因子等参数的计算公式。采用PIC软件对螺旋型Blumlein线的部分波传输过程进行数值模拟,慢波系数等参数的模拟值与计算值基本相符。进行了恒阻抗负载下螺旋型Blumlein线的原理性实验,实验得到的负载波形与编程计算得到的波形基本吻合。  相似文献   

14.
The characteristics of the sound field of shock-containing under-expanded jet flows are studied by measuring the noise from a convergent nozzle operated over an extensive envelope of supercritical jet operating conditions. The measurements were conducted in an anechoic facility. They are complementary to the turbulent mixing noise experiments (described in Part I) for subsonic and fully-expanded (shock-free) supersonic jets. The overall results from shock-containing jets are compared directly with the corresponding results from shock-free jets, and the effects of nozzle pressure ratio and jet exhaust temperature on broadband shock-associated noise are assessed independently. For a supersonic jet, the regimes of jet operating conditions, observer angles, and frequencies over which the sound field is dominated by shock-associated noise are identified. Finally, the spectral results are compared in a preliminary manner with the spectra predicted by an existing theoretical model, and good agreement is obtained in most cases.  相似文献   

15.
Effects of fuel jet penetration height on supersonic combustion behaviors were investigated experimentally in a supersonic combustion ramjet model combustor at a Mach speed of 2 and at a stagnation temperature of 1900 K. The jet-to-crossflow momentum flux ratio was varied to control the fuel-jet penetration height, using several injectors with different orifice diameters: 2, 3, and 4 mm. First, transverse nitrogen jets were observed to identify a relationship between the fuel jet penetration height and the momentum flux ratio by focusing Schlieren photography. Then, supersonic combustion behaviors of ethylene were investigated through combustion pressure measurements. Simultaneously, time-resolved images of CH* chemiluminescence and shadowgraphs were recorded with high-speed video cameras. Furthermore, a morphology of supersonic combustion modes was investigated for various equivalence ratios and fuel penetration heights in a two-dimensional latent space trained by the shared Gaussian process latent variable models (SGPLVM), considering CH* chemiluminescence images and the shock parameters. The results indicated that the penetration height of nitrogen jets was a function of the jet momentum flux ratio; this function was expressed by a fitting curve. Five typical combustion modes were identified based on time-resolved CH* chemiluminescence images, shadowgraphs, and pressure profiles. Even for a given equivalence ratio, different combustion modes were observed depending on the fuel penetration height. For an injection diameter of 3 and 4 mm, cavity shear-layer and jet-wake stabilized combustions were observed as the scram modes. On the other hand, although the cavity shear-layer and lifted-shear-layer stabilized combustions were observed, no jet-wake stabilized combustion was observed for an orifice diameter of 2 mm. Fuel penetration heights above the cavity aft wall were expected to affect the combustion behavior. Finally, a morphology of the supersonic combustion modes was clearly shown in the two-dimensional latent space of the SGPVLM.  相似文献   

16.
During laser cutting of stainless steels, titanium and aluminum alloys, a coaxial and high pressure inert gas jet is used to improve the cut edge quality. The process normally consumes a large amount of inert gas and has a poor tolerance to variation in process parameters. This is solely because the gas nozzles are mostly of the conical and convergent type in which the gas jets are subsonic. Based on two dimensional steady state gas dynamic theory, computer simulation and shadowgraphic techniques, the gas jet patterns from conical nozzles and the newly designed supersonic nozzles are analyzed. The distribution of pressure, momentum, gas density and existence of shock waves are predicted and mapped. Based on these characteristics, the effect of the gas jets upon the cut quality is explained. It is concluded that a supersonic gas jet offers the best flow characteristics for high pressure laser cutting.  相似文献   

17.
郭恒  苏运波  李和平  曾实  聂秋月  李占贤  李志辉 《物理学报》2018,67(4):45201-045201
以临近空间高超声速飞行器以及航天器再入大气环境飞行过程"黑障"问题的研究为背景,进行了多相交流电弧放电实验装置的物理设计,建立了六相交流电弧等离子体实验平台(MPX-2015),在背景压力为500 Pa的亚大气压条件下获得了最大直径和长度分别达到14.0 cm和60.0 cm的等离子体射流.研究了工作气体流量、真空腔压强、电极间距以及弧电流等因素对等离子体自由射流和冲击射流特性的影响规律.结果表明:在实验参数范围内,真空腔压强对等离子体的射流特性影响最为显著,等离子体自由射流的长度和直径以及冲击钝体条件下的鞘套有效工作长度和厚度均随着压强的降低而增大;提高沿电极环缝注入的工作气体流量或弧电流亦有利于等离子体鞘套尺寸的增加.上述工作有助于进一步开展临近空间飞行器与其周围复杂介质环境间复杂的气动热效应和"黑障"问题的研究.  相似文献   

18.
超音速等离子体点火过程的三维数值模拟   总被引:6,自引:0,他引:6       下载免费PDF全文
为了研究等离子体点燃超音速混合气流的过程,设计并验证了超音速燃烧室的三维计算模型,计算出了燃烧室等离子体点火时的流场参数和化学反应规律,分析了等离子体点火对燃烧室内燃烧的影响。计算结果表明:高温等离子体射流的滞止作用通过增加混合气在燃烧室内的停留时间提高了点火效率; 等离子体点火时燃烧区域的压力扩散比较充分,内部为压力相对平衡的低速流动; 高温等离子体射流高速射向混合气流时产生的速度矢量偏移扩大了点火面积,从而使点火效率得到提高; 氢气、空气燃烧的燃烧产物主要是水,燃烧区域局部温度主要受局部放热反应的影响。  相似文献   

19.
Laminar flame speeds of premixed jet fuel/air with the addition of hydrogen, methane and ethylene are measured in a constant-volume bomb at an initial temperature of 420 K, initial pressure of 3 atm, equivalence ratios of 0.6–1.5 and gas mass fractions of 0–50%. The experimental results show that the addition of hydrogen and ethylene can significantly improve the laminar flame speed of the liquid jet fuel, while the addition of methane shows a weak inhibitory effect, and these effects are relatively remarkable on the fuel-rich conditions. The laminar flame speed of the dual fuels/air is linearly dependent on the additional gas mass fraction. A kinetic analysis indicates that the gas addition causes both thermodynamic and chemical kinetic effects on the laminar flame speed of the dual fuels/air. The adiabatic temperature increases and decreases with the addition of hydrogen/ethylene and methane, respectively. A sensitivity analysis shows that the reactions concerning to the H, CH3 and C2H3 radicals become significant with the addition of hydrogen, methane and ethylene, respectively, and that the different values of the rate of product (ROP) of these species via the critical reactions lead to a different promotional or inhibitory effect on the fuel-rich and fuel-lean conditions.  相似文献   

20.
The influence of the processing parameters on the dynamic characteristic of supersonic impinging jet in laser cutting is studied numerically. The numerical modeling of a supersonic jet impinging on a plate with a hole is presented to analyze the gas jet–workpiece interaction. The model is able to make quantitative predictions of the effect of the standoff distance and exit Mach number on the mass flow rate and the axial thrust. The numerical results show that the suitable cutting range is slightly different for different exit Mach number, but the optimal cutting parameter for certain exit total pressure is nearly changeless. So the better cut quality and capacity can be obtained mainly by setting the suitable standoff distance for a certain nozzle pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号