首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple electron affinities are identified in the temperature dependence of the electron-capture detector: naphthalene, 0.16, 0.13+/-0.01, anthracene, 0.69, 0.60, 0 53+/-0.01; tetracene 1.1, 0.88+/-0.03, 0.53+/-0.05; pyrene, 0.61, 0.50+/-0.02; azulene 0.90, 0.80, 0.70+/-0.02, 0.65, 0.55+/-0.05; acenaphthylene, 0.80, 0.69, 0.60, 0.50+/-0.05; and c-C8H8, 0.80, 0.70, 0.55+/-0.02; (all in eV). These are obtained from a rigorous least squares procedure incorporating literature values and uncertainties. The adiabatic electron affinities for about 40 hydrocarbons listed in the US National Institute of Standards and Technology (NIST) tables are evaluated. The adiabatic electron affinity values not listed in NIST are biphenylene, 0.45+/-0.05 eV and coronene. 0.8+/-0.05 eV. Morse potential energy curves in the C-H dimensions illustrate multiple states for benzene and naphthalene.  相似文献   

2.
A procedure for obtaining the adiabatic electron affinities (AEA) of organic molecules from half-wave reduction potentials in aprotic solvents is presented. Molecules are placed into groups according to their structure. Each group has a different solution energy difference. Calculations of AEA and charge distributions with AM1-multiconfiguration configuration interaction are used to support the intuitive classification of the molecules. The procedure is illustrated for Vitamins A and E, riboflavin, the azines, polyenes, hydroxy-pyrimidine, oxo-guanine, the hydrogen bonded cytosine-oxo-guanine as well as the AEA, and vertical EA (VEA) of Cytosine (C), Uracil (U), Thymine (T), Guanine (G) and Adenine (A). The latter values are: (VEA) G, 0.10; A, -0.49; U, 0.33; T, 0.31; C, -1.48 and (AEA) G, 1.51 +/- 0.05; A, 0.95 +/- 0.05; U, 0.80 +/- 0.05; T, 0.79 +/- 0.05; C, 0.56 +/- 0.05 in eV.  相似文献   

3.
The electron capture detector, reduction potential, electron transfer and photon methods of determining electron affinities are compared. The adiabatic electron affinities are (in eV): t-azobenzene(O2), 1.578(5); t-azobenzene, 1.378(5); cytosine, 1.043(5) from anion photoelectron spectra. The largest or ground state value for trans-azobenzene and an excited state electron affinity for cytosine, 0.70 eV are also determined by reduction potentials. Other excited state energies are (in eV): t-azobenzene, 0.328(5), 0.589(5), 0.690(5), 0.768(5), 0.954(5), 1.038(5), 1.150(5), 1.275(5) and cytosine, 0.089(5), 0.098(5), 0.198(5), 0.235(5). The cytosine values are consistent with electron transport and radiation damage and repair in DNA.  相似文献   

4.
The molecular structures and electron affinities of the R-OO/R-OO(-) (R = CH3, C2H5, n-C3H7, n-C4H9, n-C5H11, i-C3H7, t-C4H9) species have been determined using seven different density functional or hybrid Hartree-Fock density functional methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s-type and p-type functions, denoted DZP++. The geometries are fully optimized with each density functional theory method. Harmonic vibrational frequencies were found to be within 3.1% of available experimental values for most functionals. Two different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity and the vertical detachment energy. The most reliable adiabatic electron affinities obtained at the DZP++ BP86 level of theory are 1.150 (CH3OO), 1.124 (C2H5OO), 1.146 (n-C3H7OO), 1.173 (n-C4H9OO), 1.184 (n-C5H11OO), 1.145 (i-C3H7OO), and 1.114 eV (t-C4H9OO). Compared with the experimental values, the average absolute error of the BPW91 method is 0.05 eV.  相似文献   

5.
Valence and dipole-bound negative ions of the nitroethane (NE) molecule and its clusters are studied using photoelectron spectroscopy (PES), Rydberg electron transfer (RET) techniques, and ab initio methods. Valence adiabatic electron affinities (EA(a)s) of NE, C(2)H(5)NO(2), and its clusters, (C(2)H(5)NO(2))(n), n=2-5, are estimated using vibrationally unresolved PES to be 0.3+/-0.2 eV (n=1), 0.9+/-0.2 eV (n=2), 1.5+/-0.2 eV (n=3), 1.9+/-0.2 eV (n=4), and 2.1+/-0.2 eV (n=5). These energies were then used to determine stepwise anion-neutral solvation energies and compared with previous literature values. Vertical detachment energies for (C(2)H(5)NO(2))(n)(-) were also measured to be 0.92+/-0.10 eV (n=1), 1.63+/-0.10 eV (n=2), 2.04+/-0.10 eV (n=3), and 2.3+/-0.1 eV (n=4). RET experiments show that Rydberg electrons can be attached to NE both as dipole-bound and valence bound anion states. The results are similar to those found for nitromethane (NM), where it was argued that the diffuse dipole state act as a "doorway state" to the more tightly bound valence anion. Using previous models for relating the maximum in the RET dependence of the Rydberg effective principle number n(max)(*), the dipole-bound electron affinity is predicted to be approximately 25 meV. However, a close examination of the RET cross section data for NE and a re-examination of such data for NM finds a much broader dependence on n(*) than is seen for RET in conventional dipole bound states and, more importantly, a pronounced [l] dependence is found in n(max)(*) (n(max)(*) increases with [l]). Ab initio calculations agree well with the experimental results apart from the vertical electron affinity value associated with the dipole bound state which is predicted to be 8 meV. Moreover, the calculations help to visualize the dramatic difference in the distributions of the excess electron for dipole-bound and valence states, and suggest that NE clusters form only anions where the excess electron localizes on a single monomer.  相似文献   

6.
The molecular structures and electron affinities of eight radicals derived from the halide benzene by removing a hydrogen atom have been determined using seven hybrid Hartree-Fock/density-functional methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted as DZP++. These methods have been carefully calibrated [J. C. Rienstra-Kiracofe, G. S. Tschumper, H. F. Schaefer, S. Nandi, and G. B. Ellison, Chem. Rev. (Washington, D. C.) 102, 231 (2002)]. The geometries are fully optimized with each density-functional theory method and discussed, respectively. The three different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity, the vertical electron affinity, and the vertical detachment energy. The most reliable adiabatic electron affinities (with zero-point vibrational energy correction), obtained at the DZP++ B3LYP level of theory, are 1.74 eV (o-C6H4F), 1.39 eV (m-C6H4F), 1.34 eV (p-C6H4F), 1.78 eV (o-C6H4Cl), 1.53 eV (m-C6H4Cl), 1.45 eV (p-C6H4Cl), 2.06 eV (o-C6H3F2), and 2.04 eV (p-C6H3F2), respectively. Compared with the experimental values, the average absolute error of the B3LYP method is 0.03 eV. The BLYP, BP86, and BPW91 functionals also gave excellent predictions, with average absolute errors of 0.05, 0.08, and 0.08 eV, respectively.  相似文献   

7.
The differences in the extent of electron-attachment reactions between thermal electrons and selected classes of organic molecules with high electron affinities were investigated. The investigations showed that interactions of thermal electrons with nitroaromatic compounds lead to the formation of neutral products with very low electron affinities. By contrast, a number of other analytes with high electron affinities such as polyhalogenated organic compounds, lead to products with high electron affinities. This difference was exploited to differentiate between nitroaromatic and polychlorinated organic compounds with a tandem arrangement consisting of two electron-capture detectors connected in series with an electron-attachment reactor.  相似文献   

8.
The optimised structures, electron affinities, and vibrational frequencies of the simplest benzenoid cyanocarbons, namely hexacyanobenzene C6(CN)6, octacyanonaphthalene C10(CN)8, and decacyanoanthracene C14(CN)10, have been studied using carefully calibrated density functional methods (Chem. Rev., 2002, 102, 231-282); the predicted adiabatic electron affinities are 3.53 eV for C6(CN)6, 4.35 eV for C10(CN)8 and 5.02 eV for C14(CN)10, which are significantly larger than those of the analogous benzenoid fluorocarbons as well as tetracyanoethane and tetracyanoquinodimethane.  相似文献   

9.
The adiabatic electron affinities (AEAs), vertical electron affinities (VEAs), and vertical detachment energies (VDEs) of cyclic perfluoroalkanes, c-C(n)F(2n) (n = 3-7), and their monotrifluoromethyl derivatives were computed using various pure and hybrid density functionals with DZP++ (polarization and diffuse function augmented double-zeta) basis sets. The theoretical AEA of c-C(4)F(8) at KMLYP/DZP++ is 0.70 eV, which exhibits satisfactory agreement with the 0.63 +/- 0.05 eV experimental value. The nonzero-point-corrected AEA of c-C(4)F(8) is predicted to be 0.41 eV at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level of theory, which shows a slight deviation of 0.11 eV from the KMLYP estimated value of 0.52 eV for the same. With the zero-point correction from the MP2/6-311G(d) [Gallup, G. A. Chem. Phys. Lett. 2004, 399, 206] level of theory combined with the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ result, the most reliable estimate of AEA of c-C(4)F(8) is 0.60 eV. c-C(3)F(6)(-), c-C(4)F(8)(-), and c-C(5)F(10)(-) are unusual in preferring planar to near planar ring structures. The ZPE-corrected AEAs of c-C(n)F(2n) increase from n = 3 (0.24 eV) to n = 5 (0.77 eV), but then dramatically fall off to 0.40 eV for both n = 6 and n = 7. All of the other functionals predict the same trend. This is due to a change in the structural preference: C(s)() c-C(6)F(12)(-) and C(1) c-C(7)F(14)(-) are predicted to favor nonplanar rings, each with an exceptionally long C-F bond. (There also is a second, higher energy D3d minimum for C(6)F(12)(-).) The SOMOs as well as the spin density plots of the c-PFA radical anions reveal that the "extra" electron is largely localized on the unique F atoms in the larger n = 6 and n = 7 rings but is delocalized in the multiatom SOMOs of the three- to five-membered ring radical anions. The computed AEAs are much larger than the corresponding VEAs; the latter are not consistent with different functionals. The AEAs are substantially larger when a c-C(n)()F(2)(n)() fluorine is replaced by a -CF(3) group. This behavior is general; PFAs with tertiary C-F bonds have large AEAs. The VDEs for all the anions are substantial, ranging from 1.89 to 3.64 eV at the KMLYP/DZP++ level.  相似文献   

10.
Rate constants have been measured for electron attachment to C5F5N (297-433 K) and to 2, 3, 5, 6-C5HF4N (303 K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133 Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8 +/- 0.5 X 10(-7) and 7 +/- 3 X 10(-10) cm(-3) s(-1), respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530 +/- 890 s(-1) at 433 K. For 2, 3, 5, 6-C5HF4N-, the detachment rate at 303 K was 520 +/- 180 s(-1). The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N)=0.70 +/- 0.05 eV and EA(2, 3, 5, 6-C5HF4N)=0.40 +/- 0.08 eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)//B3LYP compound method. The EAs are found to decrease by 0.25 eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.  相似文献   

11.
[reaction: see text] The adiabatic electron affinity (EA(ad)) of the CH(3)-C[triple bond]C(*) radical [experiment = 2.718 +/- 0.008 eV] and the gas-phase basicity of the CH(3)-C[triple bond]C:(-) anion [experiment = 373.4 +/- 2 kcal/mol] have been compared with those of their fluorine derivatives. The latter are studied using theoretical methods. It is found that there are large effects on the electron affinities and gas-phase basicities as the H atoms of the alpha-CH(3) group in the propynyl system are substituted by F atoms. The predicted electron affinities are 3.31 eV (FCH(2)-C[triple bond]C(*)), 3.86 eV (F(2)CH-C[triple bond]C(*)), and 4.24 eV (F(3)C-C[triple bond]C(*)), and the predicted gas-phase basicities of the fluorocarbanion derivatives are 366.4 kcal/mol (FCH(2)-C[triple bond]C:(-)), 356.6 kcal/mol (F(2)CH-C[triple bond]C:(-)), and 349.8 kcal/mol (F(3)C-C[triple bond]C:(-)). It is concluded that the electron affinities of fluoropropynyl radicals increase and the gas-phase basicities decrease as F atoms sequentially replace H atoms of the alpha-CH(3) in the propynyl system. The propargyl radicals, lower in energy than the isomeric propynyl radicals, are also examined and their electron affinities are predicted to be 0.98 eV ((*)CH(2)-C[triple bond]CH), 1.18 eV ((*)CFH-C[triple bond]CH), 1.32 eV ((*)CF(2)-C[triple bond] CH), 1.71 eV ((*)CH(2)-C[triple bond]CF), 2.05 eV ((*)CFH-C[triple bond]CF), and 2.23 eV ((*)CF(2)-C[triple bond]CF).  相似文献   

12.
To resolve discrepancies concerning the magnitude of the electron affinities of perfluorocyclopropane and perfluorocyclobutane, quantum chemical calculations have been carried out with the MP2 and CCSD(T) methods in conjunction with augmented correlation consistent basis sets (aug-cc-pVX Z, X = D, T, Q). Though no experimental values have been found for perfluorocyclopropane, we estimate its electron affinity to be 0.17 eV (0.00 eV without zero-point vibrational energy corrections). In addition, determination of the electron affinity of perfluorocyclobutane (0.61 and 0.44 eV with and without zero-point vibrational energy corrections, respectively) is in good agreement with experimental values reported by Miller and co-workers (0.63 +/- 0.05 eV). This study also demonstrates that the widely prescribed B3LYP/DZP++ model chemistry for computing electron affinities does not correctly describe these systems.  相似文献   

13.
The molecular structures, electron affinities, and dissociation energies of the As(n)/As(-) (n) (n = 1-5) species have been examined using six density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. These methods have been carefully calibrated (Chem Rev 2002, 102, 231) for the prediction of electron affinities. The geometries are fully optimized with each DFT method independently. Three different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first dissociation energies D(e)(As(n-1)-As) for the neutral As(n) species, as well as those D(e)(As(-) (n-1)-As) and D(e) (As(n-1)-As(-)) for the anionic As(-) (n) species, have also been reported. The most reliable adiabatic electron affinities, obtained at the DZP++ BLYP level of theory, are 0.90 (As), 0.74 (As(2)), 1.30 (As(3)), 0.49 (As(4)), and 3.03 eV (As(5)), respectively. These EA(ad) values for As, As(2), and As(4) are in good agreement with experiment (average absolute error 0.09 eV), but that for As(3) is a bit smaller than the experimental value (1.45 +/- 0.03 eV). The first dissociation energies for the neutral arsenic clusters predicted by the B3LYP method are 3.93 eV (As(2)), 2.04 eV (As(3)), 3.88 eV (As(4)), and 1.49 eV (As(5)). Compared with the available experimental dissociation energies for the neutral clusters, the theoretical predictions are excellent. Two dissociation limits are possible for the arsenic cluster anions. The atomic arsenic results are 3.91 eV (As(-) (2) --> As(-) + As), 2.46 eV (As(-) (3) --> As(-) (2) + As), 3.14 eV (As(-) (4) --> As(-) (3) + As), and 4.01 eV (As(-) (5) --> As(-) (4) + As). For dissociation to neutral arsenic clusters, the predicted dissociation energies are 2.43 eV (As(-) (3) --> As(2) + As(-)), 3.53 eV (As(-) (4) --> As(3) + As(-)), and 3.67 eV (As(-) (5) --> As(4) + As(-)). For the vibrational frequencies of the As(n) series, the BP86 and B3LYP methods produce good results compared with the limited experiments, so the other predictions with these methods should be reliable.  相似文献   

14.
The diatomic molecules SiPb and GePb were for the first time identified by producing high temperature vapors of the constituent pure elements in a "double-oven-like" molecular-effusion assembly. The partial pressures of the atomic, heteronuclear, and homonuclear gaseous species observed in the vapor, namely, Si, Ge, Pb, SiPb, GePb, Pb2, Gen, and Sin (n=2-3), were mass-spectrometrically measured in the overall temperature ranges 1753-1961 K (Ge-Pb) and 1992-2314 K (Si-Pb). The dissociation energies of the new species were determined by second- and third-law analyses of both the direct dissociation reactions and isomolecular exchange reactions involving homonuclear molecules. The selected values of the dissociation energies at 0 K (D0 degrees) are 165.1+/-7.3 and 141.6+/-6.9 kJ/mol, respectively, for SiPb and GePb, and the corresponding enthalpies of formation (DeltafH0 degrees) are 476.4+/-7.3 and 419.3+/-6.9 kJ/mol. The ionization efficiency curves of the two species were measured, giving the following values for the first ionization energies: 7.0+/-0.2 eV (SiPb) and 7.1+/-0.2 eV (GePb). A computational study of the species SiPb and GePb was also carried out at the CCSD(T) level of theory using the relativistic electron core potential approach. Molecular parameters, adiabatic ionization energies, adiabatic electron affinities, and dissociation energies of the title species were calculated, as well as the enthalpy changes of the exchange reactions involving the other Pb-containing diatomics of group 14. Finally, a comparison between the experimental and theoretical results is presented, and from a semiempirical correlation the unknown dissociation energies of the SiSn and PbC molecules are predicted as 234+/-7 and 185+/-11 kJ/mol, respectively.  相似文献   

15.
The optimized geometries, adiabatic electron affinities, vertical electron affinities, vertical electron detachment energies (for the anions), and IR-active vibrational frequencies have been predicted for the long linear carbon chains HC(2)(n)()(+1)H (n = 4-11). The B3LYP density functional combined with DZP and TZ2P basis sets was used in this theoretical study. These methods have been extensively calibrated versus experiment for the prediction of electron affinities (Chem. Rev. 2002, 102, 231). The computed physical properties are discussed and compared with the even carbon chains HC(2)(n)()H. The predicted electron affinities form a remarkably regular sequence: 2.12 eV (HC(9)H), 2.42 eV (HC(11)H), 2.66 eV (HC(13)H), 2.85 eV (HC(15)H), 3.01 eV (HC(17)H), 3.14 eV (HC(19)H), 3.25 eV (HC(21)H), and 3.35 eV (HC(23)H). These electron affinities are as much as 0.4 eV higher than those for analogous even carbon chains. The predicted structures display an intermediate cumulene-polyacetylene type of bonding, with the inner carbons appearing cumulenic and the outer carbons polyacetylenic.  相似文献   

16.
In this work, we report on a photoionization study of the microhydration of the four DNA bases. Gas-phase clusters of water with DNA bases [guanine (G), cytosine (C), adenine (A), and thymine (T)] are generated via thermal vaporization of the bases and expansion of the resultant vapor in a continuous supersonic jet expansion of water seeded in Ar. The resulting clusters are investigated by single-photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for the DNA bases and the following water (W) clusters: G, GWn (n = 1-3); C, CWn (n = 1-3); A, AWn (n = 1,2); and T, TWn (n = 1-3). Appearance energies (AE) are derived from the onset of these PIE curves (all energies in eV): G (8.1 +/- 0.1), GW (8.0 +/- 0.1), GW2 (8.0 +/- 0.1), and GW3 (8.0); C (8.65 +/- 0.05), CW (8.45 +/- 0.05), CW2 (8.4 +/- 0.1), and CW3 (8.3 +/- 0.1); A (8.30 +/- 0.05), AW (8.20 +/- 0.05), and AW2 (8.1 +/- 0.1); T (8.90 +/- 0.05); and TW (8.75 +/- 0.05), TW2 (8.6 +/- 0.1), and TW3 (8.6 +/- 0.1). The AEs of the DNA bases decrease slightly with the addition of water molecules (up to three) but do not converge to values found for photoinduced electron removal from DNA bases in solution.  相似文献   

17.
Adiabatic electron affinities, optimized molecular geometries, and IR-active vibrational frequencies have been predicted for small cyclic hydrocarbon radicals C(n)H(2)(n)(-)(1) (n = 3-6) and their perfluoro counterparts C(n)F(2)(n)(-)(1) (n = 3-6). Total energies and optimized geometries of the radicals and corresponding anions have been obtained using carefully calibrated (Chem. Rev. 2002, 102, 231) density functional methods, namely, the B3LYP, BLYP, and BP86 functionals in conjunction with the DZP++ basis set. The predicted electron affinities show that only the cyclopropyl radical tends to bind electrons among the hydrocarbon radicals studied. The trend for the perfluorocarbon (PFC) radicals is quite different. The electron affinities increase with expanding ring size until n = 5 and then slightly decrease at n = 6. Predicted electron affinities of the hydrocarbon radicals using the B3LYP hybrid functional are 0.24 eV (C(3)H(5)/C(3)H(5)(-)), -0.19 eV (C(4)H(7)/C(4)H(7)(-)), -0.15 eV (C(5)H(9)/C(5)H(9)(-)), and -0.11 eV (C(6)H(11)/C(6)H(11)(-)). Analogous electron affinities of the perflurocarbon radicals are 2.81 eV (C(3)F(5)/C(3)F(5)(-)), 3.18 eV (C(4)F(7)/C(4)F(7)(-)), 3.34 eV (C(5)F(9)/C(5)F(9)(-)), and 3.21 eV (C(6)F(11)/C(6)F(11)(-)).  相似文献   

18.
As a general rule, saturated hydrocarbons are unable to bind an electron, i.e., their electron affinities are negative, but the corresponding perfluorinated molecules can have significant electron affinities, especially in the case of branched and ring systems. Four different density functional theory (DFT) methods in conjunction with double-zeta plus polarization function augmented diffuse function basis sets (DZP++) have been employed to study the equilibrium geometries, electron affinities, and vibrational frequencies of the adamantane (C10H16) and perfluoroadamantane (C10F16) molecules. Three types of neutral-anion separations reported are the adiabatic electron affinity, the vertical electron affinity, and the vertical detachment energy. The adiabatic electron affinity predicted at the DZP++ B3LYP level of theory for adamantane is, as expected, negative (-0.58 eV), while that for perfluoroadamantane is distinctly positive, namely, 1.06 eV (or 1.31 eV after correction for zero-point vibrational energies).  相似文献   

19.
Rate constants for electron attachment to the three isomers of trifluoromethylbenzonitrile [(CF(3))(CN)C(6)H(4), or TFMBN] were measured over the temperature range of 303-463 K in a 133-Pa He buffer gas, using a flowing-afterglow Langmuir-probe apparatus. At 303 K, the measured attachment rate constants are 9.0 x 10(-8) (o-TFMBN), 5.5 x 10(-8) (m-TFMBN), and 8.9 x 10(-8) cm(3) s(-1) (p-TFMBN), estimated accurate to +/-25%. The attachment process formed only the parent anion in all three cases. Thermal electron detachment was observed for all three anion isomers, and rate constants for this reverse process were also measured. From the attachment and detachment results, the electron affinities of the three isomers of TFMBN were determined to be 0.70(o-TFMBN), 0.67(m-TFMBN), and 0.83 eV (p-TFMBN), all +/-0.05 eV. G3(MP2) [Gaussian-3 calculations with reduced M?ller-Plesset orders (MP2)] calculations were carried out for the neutrals and anions. Electron affinities derived from these calculations are in good agreement with the experimental values.  相似文献   

20.
A joint threshold photoelectron photoion coincidence spectrometry (TPEPICO) and collision-induced dissociation (CID) study on the thermochemistry of Co(CO)(2)NOPR(3), R = CH(3) (Me) and C(2)H(5) (Et), complexes is presented. Adiabatic ionization energies of 7.36 +/- 0.04 and 7.24 +/- 0.04 eV, respectively, were extracted from scans of the total ion and threshold electron signals. In the TPEPICO study, the following 0 K onsets were determined for the various fragment ions: CoCONOPMe(3)(+), 8.30 +/- 0.05 eV; CoNOPMe(3)(+), 9.11 +/- 0.05 eV; CoPMe(3)(+) 10.80 +/- 0.05 eV; CoCONOPEt(3)(+), 8.14 +/- 0.05 eV; CoNOPEt(3)(+), 8.92 +/- 0.05 eV; and CoPEt(3)(+), 10.66 +/- 0.05 eV. These onsets were combined with the Co(+)-PR(3) (R = CH(3) and C(2)H(5)) bond dissociation energies of 2.88 +/- 0.11 and 3.51 +/- 0.17 eV, obtained from the TCID experiments, to derive the heats of formation of the neutral and ionic species. Thus, the Co(CO)(2)NOPR(3) (R = CH(3) and C(2)H(5)) 0 K heats of formation were found to be -350 +/- 13 and -376 +/- 18 kJ x mol(-)(1), respectively. These heats of formation were combined with the published heat of formation of Co(CO)(3)NO to determine the substitution enthalpies of the carbonyl to phosphine substitution reactions. Room-temperature values of the heats of formation are also given using the calculated harmonic vibrational frequencies. Analysis of the TCID experimental results provides indirectly the adiabatic ionization energies of the free phosphine ligands, P(CH(3))(3) and P(C(2)H(5))(3), of 7.83 +/- 0.03 and 7.50 +/- 0.03 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号