首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for ternary chemical systems. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity coefficient models for phase equilibrium properties (vapor-liquid and liquid-liquid equilibrium). Constructed ternary models are based on those for the three pure component and three binary subsystems evaluated on demand through the TDE software algorithms. All models are described in detail, and extensions to the class structure of the program are provided. Reliable evaluation of properties for the binary subsystems is essential for successful property evaluations for ternary systems, and algorithms are described to aid appropriate parameter selection and fitting for the implemented activity coefficient models (NRTL, Wilson, Van Laar, Redlich-Kister, and UNIQUAC). Two activity coefficient models based on group contributions (original UNIFAC and NIST-KT-UNIFAC) are also implemented. Novel features of the user interface are shown, and directions for future enhancements are outlined.  相似文献   

3.
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.  相似文献   

4.
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe the development of a World Wide Web-based interface to TDE evaluations of pure compound properties, including critical properties, phase boundary equilibria (vapor pressures, sublimation pressures, and crystal-liquid boundary pressures), densities, energetic properties, and transport properties. This includes development of a system for caching evaluation results to maintain high availability and an advanced window-in-window interface that leverages modern Web-browser technologies. Challenges associated with bringing the principal advantages of the TDE technology to the Web are described, as are compromises to maintain general access and speed of interaction while remaining true to the tenets of dynamic data evaluation. Future extensions of the interface and associated Web-services are outlined.  相似文献   

5.
缔合马丁-侯状态方程I 方程的建立   总被引:1,自引:0,他引:1  
An associating MH equation of state (AMH EOS) is developed on the basis of the MH equation of state by incorporating the chemical association into it, a constant evaluation method is proposed for the AMH EOS. The AMH EOS is used to calculate thermodynamic properties of water, some alcohols and carboxylic acids, good results are obtained. It shows that the constant evaluation method is feasible.  相似文献   

6.
An equation of state (EOS) for the NH3–H2O system has been developed. This EOS incorporates a highly accurate end-member EOS and on an empirical mixing rule. The mixing rule is based on an analogy with high order contributions to the virial expansion for mixtures. Comparison with experimental data indicates that the mixed system EOS can predict both phase equilibria and volumetric properties for this binary system with accuracy close to that of the experimental data from 50°C and 1 bar to critical temperatures and pressures.  相似文献   

7.
This work proposes a new equation of state (EOS) based on molecular theory for the prediction of thermodynamic properties of real fluids. The new EOS uses a novel repulsive term, which gives the correct hard sphere close packed limit and yields accurate values for hard sphere and hard chain virial coefficients. The pressure obtained from this repulsive term is corrected by a combination of van der Waals and Dieterici potentials. No empirical temperature functionality of the parameters has been introduced at this stage. The novel EOS predicts the experimental volumetric data of different compounds and their mixtures better than the successful EOS of Peng and Robinson. The prediction of vapor pressures is only slightly less accurate than the results obtained with the Peng-Robinson equation that is designed for these purposes. The theoretically based parameters of the new EOS make its predictions more reliable than those obtained from purely empirical forms.  相似文献   

8.
In this study, based on the compressibility effect of gas molecules, a new three-parameter cubic equation of state (EOS) is derived. To validate this EOS, density predictions of methane, ethane, carbon dioxide and oxygen have been studied using the new EOS at the temperature of 373 K and at the pressures up to 100 MPa. The results show a good agreement with reference data and this suggests that the proposed EOS would help to improve the study of thermodynamic properties for real gases.  相似文献   

9.
In previous work, we developed the crossover lattice equation of state (xLF EOS) for pure fluids and the xLF EOS yielded the saturated vapour pressure and the density values with a much better accuracy than the classical LF EOS over a wide range. In this work, we extended xLF EOS to fluid mixtures. Classical composition-dependent mixing rules with only adjustable two binary interaction parameters same as the LF EOS are used. A comparison is made upon experimental data for fluids mixtures in the one- and two-phase regions. The xLF EOS shows more improved representations than the LF EOS, especially in the critical region.  相似文献   

10.
In a previous publication, we described the use of biradicals, in that case two TEMPO molecules tethered by an ethylene glycol chain of variable length, as polarizing agents for microwave driven dynamic nuclear polarization (DNP) experiments. The use of biradicals in place of monomeric paramagnetic centers such as TEMPO yields enhancements that are a factor of approximately 4 larger (epsilon approximately 175 at 5 T and 90 K) and concurrently the concentration of the polarizing agent is a factor of 4 smaller (10 mM electron spins), reducing the residual electron nuclear dipole broadening. In this paper we describe the synthesis and characterization by EPR and DNP/NMR of an improved polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL). Under the same experimental conditions and using 2.5 mm magic angle rotors, this new biradical yields larger enhancements (epsilon approximately 290) at lower concentrations (6 mM electron spins) and has the additional important property that it is compatible with experiments in aqueous media, including salt solutions commonly used in the study of proteins and nucleic acids.  相似文献   

11.
In this research, we use the original Peng-Robinson (PR) equation of state (EOS) for pure fluids and develop a crossover cubic equation of state which incorporates the scaling laws asymptotically close to the critical point and it is transformed into the original cubic equation of state far away from the critical point. The modified EOS is transformed to ideal gas EOS in the limit of zero density. A new formulation for the crossover function is introduced in this work. The new crossover function ensures more accurate change from the singular behavior of fluids inside the regular classical behavior outside the critical region. The crossover PR (CPR) EOS is applied to describe thermodynamic properties of pure fluids (normal alkanes from methane to n-hexane, carbon dioxide, hydrogen sulfide and R125). It is shown that over wide ranges of state, the CPR EOS yields the thermodynamic properties of fluids with much more accuracy than the original PR EOS. The CPR EOS is then used for mixtures by introducing mixing rules for the pure component parameters. Higher accuracy is observed in comparison with the classical PR EOS in the mixture critical region.  相似文献   

12.
《Fluid Phase Equilibria》1998,145(2):193-215
A volume-translated Peng-Robinson (VTPR) equation of state (EOS) is developed in this study. Besides the two parameters in the original Peng-Robinson equation of state, a volume correction term is employed in the VTPR EOS. In this equation, the temperature dependence of the EOS energy parameter was regressed by an improved expression which yields better correlation of pure-fluid vapor pressures. The volume correction parameter is also correlated as a function of the reduced temperature. The VTPR EOS includes two optimally fitted parameters for each pure fluid. These parameters are reported for over 100 nonpolar and polar components. The VTPR EOS shows satisfactory results in calculating the vapor pressures and both the saturated vapor and liquid molar volumes. In comparison with other commonly used cubic EOS, the VTPR EOS presents better results, especially for the saturated liquid molar volumes of polar systems. VLE calculations on fluid mixtures were also studied in this work. Traditional van der Waals one-fluid mixing rules and other mixing models using excess free energy equations were employed in the new EOS. The VTPR EOS is comparable to other EOS in VLE calculations with various mixing rules, but yields better predictions on the molar volumes of liquid mixtures.  相似文献   

13.
In this paper, a modified perturbed hard-sphere-chain equation of state (EOS) by Eslami [H. Eslami, Fluid Phase Equilib. 216 (2004) 21–26], is applied for modelling the thermodynamic properties of some ionic liquids (ILs). Two reliable scaling constants are used to determine two temperature-dependent parameters in the proposed EOS. The unique adjustable parameter that is reflecting the number of segments per molecule, r, compensates the uncertainties in the calculated temperature-dependent parameters. The reliability of the proposed EOS has been checked by comparing the results with 1561 experimental data points for 18 ILs over a broad range of pressures and temperatures. The overall average absolute deviation is 0.35%. A comparison of the predicted results, using the present EOS with the results of some previous models, indicates that the determined results of this EOS are in more accordance with experimental data than those.  相似文献   

14.
15.
In this work, a general equation of state (EOS) recently derived by Grzybowski et al. [Phys. Rev. E 83, 041505 (2011)] is applied to 51 molecular and ionic liquids in order to perform density scaling of pVT data employing the scaling exponent γ(EOS). It is found that the scaling is excellent in most cases examined. γ(EOS) values range from 6.1 for ammonia to 13.3 for the ionic liquid [C(4)C(1)im][BF(4)]. These γ(EOS) values are compared with results recently reported by us [E. R. López, A. S. Pensado, M. J. P. Comu?as, A. A. H. Pádua, J. Fernández, and K. R. Harris, J. Chem. Phys. 134, 144507 (2011)] for the scaling exponent γ obtained for several different transport properties, namely, the viscosity, self-diffusion coefficient, and electrical conductivity. For the majority of the compounds examined, γ(EOS) > γ, but for hexane, heptane, octane, cyclopentane, cyclohexane, CCl(4), dimethyl carbonate, m-xylene, and decalin, γ(EOS) < γ. In addition, we find that the γ(EOS) values are very much higher than those of γ for alcohols, pentaerythritol esters, and ionic liquids. For viscosities and the self-diffusion coefficient-temperature ratio, we have tested the relation linking EOS and dynamic scaling parameters, proposed by Paluch et al. [J. Phys. Chem. Lett. 1, 987-992 (2010)] and Grzybowski et al. [J. Chem. Phys. 133, 161101 (2010); Phys. Rev. E 82, 013501 (2010)], that is, γ = (γ(EOS)/φ) + γ(G), where φ is the stretching parameter of the modified Avramov relation for the density scaling of a transport property, and γ(G) is the Gru?neisen constant. This relationship is based on data for structural relaxation times near the glass transition temperature for seven molecular liquids, including glass formers, and a single ionic liquid. For all the compounds examined in our much larger database the ratio (γ(EOS)/φ) is actually higher than γ, with the only exceptions of propylene carbonate and 1-methylnaphthalene. Therefore, it seems the relation proposed by Paluch et al. applies only in certain cases, and is really not generally applicable to liquid transport properties such as viscosities, self-diffusion coefficients or electrical conductivities when examined over broad ranges of temperature and pressure.  相似文献   

16.
The corresponding-states principle (CSP) has been considered for the development of the equations of state (EOS) of minor isotopologues that are usually unknown. We demonstrate that, for isotopologues of a given molecular fluid, a general extended multi-parameter corresponding-states EOS can be reduced to the three-parameter EOS, utilizing the critical parameters (temperature and density) and Pitzer's acentric factor as correlation parameters. Appropriate general CSP mathematical formalism and equations for constructing the EOS of minor isotopologues are described in detail. The formalism and equations were applied to isotopologues of water and demonstrated that the isotopic effect on the critical parameters and the acentric factor of H(2)(18)O can be successfully calculated from the EOS of H2O and experimental data on the isotope effects (liquid-vapor isotope fractionation factor and molar volume isotope effect). We have also shown that the experimental data on the vapor pressure isotope effect (VPIE) for 18O-substituted water are inconsistent within the framework of thermodynamics with the liquid-vapor oxygen isotope fractionation factor. The novel approach of CSP to isotopologues developed in this study creates a new opportunity for constructing the EOS of minor isotopologues for many other molecular fluids.  相似文献   

17.
A mathematical framework for applying a density-and-temperature-dependent volume translation in a thermodynamically consistent manner was developed. Volumetric equations of state (EOS)s that incorporate this translation procedure can be used to generate derived properties, such as fugacity and enthalpy departure, that are based on isothermal departure or residuals from ideal gas state conditions. This kind of translation serves to improve the original EOS and not simply act as a correlation for molar volumes. A density-and-temperature-modified translation of this type was applied to the Soave–Redlich–Kwong EOS and was shown to possess accuracy for saturation pressure predictions equivalent to the untranslated EOS, as well as greatly improved density predictions compared to what is available when using only constant valued translation. The EOS translated in this manner retains many of the important features of the untranslated EOS, such as explicit calculation of volume roots, while having the representation capabilities of substantially more complicated models, such as the extended virial equation of Benedict, Webb, Rubin, and Starling.  相似文献   

18.
《Fluid Phase Equilibria》1999,166(1):21-37
In this paper we present a new procedure, based on quantum/molecular (QM/MM) mechanics and molecular dynamics (MD) computer simulations, for estimating the Perturbed Hard Sphere Chain Theory (PHSCT) equation of state (EOS) parameters of a set of 14 alternative chloro-fluoro-hydrocarbons (CFH) of industrial relevance and to predict their thermophysical properties and PVT behavior. Force field and quantum-mechanical techniques were employed in molecular modeling and for the calculation of geometrical and chemico-physical parameters. The Connolly surface algorithm, corrected for quantum-mechanical effects, was used in the evaluation of molecular surfaces and volumes. From these data, the parameters of the PHSCT EOS, V* and A*, were obtained. The third parameter, E*, was calculated from extensive MD simulations under NPT conditions. The new, original method proposed in this work gives good results, is relatively inexpensive, is absolutely general and can be applied in principle to any EOS, provided the parameters have a physical meaning. The tuning of the energetic parameter to a generated data set accounts for the degree of empiricism introduced at a certain stage in the development of any EOS.  相似文献   

19.
《Fluid Phase Equilibria》1998,145(2):169-192
Cubic equations of state (EOS) are extended to describe polymer-solvent vapor-liquid equilibria (VLE). The solvents are described the conventional way using critical parameters. To describe the pure polymers, only the weight-average molecular weight is necessary, though number-average molecular weight, polydispersity and melt density can be incorporated if desired. To extend the model to mixtures, a mixing rule that combines EOS with excess energy models is used. In this formulation, the excess Gibbs energy term is considered in two parts: the classical Flory term for the entropic contributions and a residual term that takes care of specific interactions between the solvent and the polymer. For athermal mixtures that exhibit no such interactions, the residual term drops out and the model becomes completely predictive. Otherwise, for residual contributions, depending upon the complexity of specific molecular interactions anticipated in the mixture, either a single parameter Flory expression or a two-parameter NRTL equation can be used. We conclude that the simple cubic EOS approach presented here is easy to use, yet competes successfully with more sophisticated EOS models developed particularly for polymer solutions. Moreover, it offers more flexibility if one or more parameters are to be tuned to the process data.  相似文献   

20.
A new quintic equation of state (EOS) for pure substances and mixtures is proposed. The equation is based on critical parameters and one saturation point. The proposed Q5EOS is a generalisation of many cubic equations of state. Equation Q5 has five parameters, four of which are temperature-independent. The temperature-dependent parameter a is expressed by a relation based on a simple power function. Parameters defining this function can be calculated from saturation data, Boyle temperature and supercritical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号