首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.

Background

In both schizophrenia and addiction, pathological changes in dopamine release appear to induce alterations in the circuitry of the nucleus accumbens that affect coordinated thought and motivation. Dopamine acts principally on medium-spiny GABA neurons, which comprise 95% of accumbens neurons and give rise to the majority of inhibitory synapses in the nucleus. To examine dopamine action at single medium-spiny neuron synapses, we imaged Ca2+ levels in their presynaptic varicosities in the acute brain slice using two-photon microscopy.

Results

Presynaptic Ca2+ rises were differentially modulated by dopamine. The D1/D5 selective agonist SKF81297 was exclusively facilitatory. The D2/D3 selective agonist quinpirole was predominantly inhibitory, but in some instances it was facilitatory. Studies using D2 and D3 receptor knockout mice revealed that quinpirole inhibition was either D2 or D3 receptor-mediated, while facilitation was mainly D3 receptor-mediated. Subsets of varicosities responded to both D1 and D2 agonists, showing that there was significant co-expression of these receptor families in single medium-spiny neurons. Neighboring presynaptic varicosities showed strikingly heterogeneous responses to DA agonists, suggesting that DA receptors may be differentially trafficked to individual varicosities on the same medium-spiny neuron axon.

Conclusion

Dopamine receptors are present on the presynaptic varicosities of medium-spiny neurons, where they potently control GABAergic synaptic transmission. While there is significant coexpression of D1 and D2 family dopamine receptors in individual neurons, at the subcellular level, these receptors appear to be heterogeneously distributed, potentially explaining the considerable controversy regarding dopamine action in the striatum, and in particular the degree of dopamine receptor segregation on these neurons. Assuming that post-receptor signaling is restricted to the microdomains of medium-spiny neuron varicosities, the heterogeneous distribution of dopamine receptors on individual varicosities is likely to encode patterns in striatal information processing.  相似文献   

2.

Background

Insect neuropeptides are involved in diverse physiological functions and can be released as neurotransmitters or neuromodulators acting within the central nervous system, and as circulating neurohormones in insect hemolymph. The insect short neuropeptide F (sNPF) peptides, related to the vertebrate neuropeptide Y (NPY) peptides, have been implicated in the regulation of food intake and body size, and play a gonadotropic role in the ovaries of some insect species. Recently the sNPF peptides were localized in the brain of larval and adult Drosophila. However, the location of the sNPF receptor, a G protein-coupled receptor (GPCR), has not yet been investigated in brains of any adult insect. To elucidate the sites of action of the sNPF peptide(s), the sNPF receptor tissue expression and cellular localization were analyzed in queens of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera), an invasive social insect.

Results

In the queen brains and subesophageal ganglion about 164 cells distributed in distinctive cell clusters (C1-C9 and C12) or as individual cells (C10, C11) were immuno-positive for the sNPF receptor. Most of these neurons are located in or near important sensory neuropils including the mushroom bodies, the antennal lobes, the central complex, and in different parts of the protocerebrum, as well as in the subesophageal ganglion. The localization of the sNPF receptor broadly links the receptor signaling pathway with circuits regulating learning and feeding behaviors. In ovaries from mated queens, the detection of sNPF receptor signal at the posterior end of oocytes in mid-oogenesis stage suggests that the sNPF signaling pathway may regulate processes at the oocyte pole.

Conclusions

The analysis of sNPF receptor immunolocalization shows that the sNPF signaling cascade may be involved in diverse functions, and the sNPF peptide(s) may act in the brain as neurotransmitter(s) or neuromodulator(s), and in the ovaries as neurohormone(s). To our knowledge, this is the first report of the cellular localization of a sNPF receptor on the brain and ovaries of adult insects.  相似文献   

3.

Background

Late cerebral ischemia carries high morbidity and mortality after subarachnoid hemorrhage (SAH) due to reduced cerebral blood flow (CBF) and the subsequent cerebral ischemia which is associated with upregulation of contractile receptors in the vascular smooth muscle cells (SMC) via activation of mitogen-activated protein kinase (MAPK) of the extracellular signal-regulated kinase (ERK)1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide a therapeutic window for treatment of cerebral ischemia after SAH.

Results

Here we demonstrate that SAH increases the phosphorylation level of ERK1/2 in cerebral vessels and reduces the neurology score in rats in additional with the CBF measured by an autoradiographic method. The intracisternal administration of SB-386023-b, a specific inhibitor of raf, given 6 h after SAH, aborts the receptor changes and protects the brain from the development of late cerebral ischemia at 48 h. This is accompanied by reduced phosphorylation of ERK1/2 in cerebrovascular SMC. SAH per se enhances contractile responses to endothelin-1 (ET-1), 5-carboxamidotryptamine (5-CT) and angiotensin II (Ang II), upregulates ETB, 5-HT1B and AT1 receptor mRNA and protein levels. Treatment with SB-386023-b given as late as at 6 h but not at 12 h after the SAH significantly decreased the receptor upregulation, the reduction in CBF and the neurology score.

Conclusion

These results provide evidence for a role of the ERK1/2 pathway in regulation of expression of cerebrovascular SMC receptors. It is suggested that raf inhibition may reduce late cerebral ischemia after SAH and provides a realistic time window for therapy.  相似文献   

4.

Background

Calcitonin gene-related peptide (CGRP) has a key role in migraine pathophysiology and is associated with activation of the trigeminovascular system. The trigeminal ganglion, storing CGRP and its receptor components, projects peripheral to the intracranial vasculature and central to regions in the brainstem with Aδ- and C-fibers; this constitutes an essential part of the pain pathways activated in migraine attacks. Therefore it is of importance to identify the regions within the brainstem that processes nociceptive information from the trigeminovascular system, such as the spinal trigeminal nucleus (STN) and the C1-level of the spinal cord. Immunohistochemistry was used to study the distribution and relation between CGRP and its receptor components - calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) - in human and rat STN and at the C1-level, using a set of newly well characterized antibodies. In addition, double-stainings with CGRP and myelin basic protein (MBP, myelin), synaptophysin (synaptic vesicles) or IB4 (C-fibers in general) were performed.

Results

In the STN, the highest density of CGRP immunoreactive fibers were found in a network around fiber bundles in the superficial laminae. CLR and RAMP1 expression were predominately found in fibers in the spinal trigeminal tract region, with some fibers spanning into the superficial laminae. Co-localization between CGRP and its receptor components was not noted. In C1, CGRP was expressed in fibers of laminae I and II. The CGRP staining was similar in rat, except for CGRP positive neurons that were found close to the central canal. In C1, the receptor components were detected in laminae I and II, however these fibers were distinct from fibers expressing CGRP as verified by confocal microscopy.

Conclusions

This study demonstrates the detailed expression of CGRP and its receptor components within STN in the brainstem and in the spinal cord at C1-level, and shows the possibility of CGRP acting postjunctionally in these areas putatively involved in primary headaches.  相似文献   

5.
6.

Background

Caffeine is the most commonly consumed psycho-stimulant in the world. The effects of caffeine on the body have been extensively studied; however, its effect on the structure of the brain has not been investigated to date.

Results

In the present study we found that the long-term consumption of caffeine can induce ventriculomegaly; this was observed in 40% of the study rats. In the caffeine-treated rats with ventriculomegaly, there was increased production of CSF, associated with the increased expression of Na+, K+-ATPase and increased cerebral blood flow (CBF). In contrast to the chronic effects, acute treatment with caffeine decreased the production of CSF, suggesting 'effect inversion' associated with caffeine, which was mediated by increased expression of the A1 adenosine receptor, in the choroid plexus of rats chronically treated with caffeine. The involvement of the A1 adenosine receptor in the effect inversion of caffeine was further supported by the induction of ventriculomegaly and Na+, K+-ATPase, in A1 agonist-treated rats.

Conclusion

The results of this study show that long-term consumption of caffeine can induce ventriculomegaly, which is mediated in part by increased production of CSF. Moreover, we also showed that adenosine receptor signaling can regulate the production of CSF by controlling the expression of Na+, K+-ATPase and CBF.  相似文献   

7.
8.

Background

Using an indirect immunoperoxidase technique, we have studied the distribution of immunoreactive fibers and cell bodies containing neurokinin in the adult human brainstem with no prior history of neurological or psychiatric disease.

Results

Clusters of immunoreactive cell bodies and high densities of neurokinin-immunoreactive fibers were located in the periaqueductal gray, the dorsal motor nucleus of the vagus and in the reticular formation of the medulla, pons and mesencephalon. Moreover, immunoreactive cell bodies were found in the inferior colliculus, the raphe obscurus, the nucleus prepositus hypoglossi, and in the midline of the anterior medulla oblongata. In general, immunoreactive fibers containing neurokinin were observed throughout the whole brainstem. In addition to the nuclei mentioned above, the highest densities of such immunoreactive fibers were located in the spinal trigeminal nucleus, the lateral reticular nucleus, the nucleus of the solitary tract, the superior colliculus, the substantia nigra, the nucleus ambiguus, the gracile nucleus, the cuneate nucleus, the motor hypoglossal nucleus, the medial and superior vestibular nuclei, the nucleus prepositus hypoglossi and the interpeduncular nucleus.

Conclusion

The widespread distribution of immunoreactive structures containing neurokinin in the human brainstem indicates that neurokinin might be involved in several physiological mechanisms, acting as a neurotransmitter and/or neuromodulator.  相似文献   

9.
10.
11.

Background

Domoic acid (DA) is an excitatory amino acid analogue of kainic acid (KA) that acts via activation of glutamate receptors to elicit a rapid and potent excitotoxic response, resulting in neuronal cell death. Recently, DA was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in vitro. We have reported that WDR35, a WD-repeat protein, may mediate apoptosis in several animal models. In the present study, we administered DA to rats intraperitoneally, then used liquid chromatography/ion trap tandem mass spectrometry (LC-MS/MS) to identify and quantify DA in the brains of the rats and performed histological examinations of the hippocampus. We further investigated the potential involvement of glutamate receptors, ROS, p38 MAPK, and WDR35 in DA-induced toxicity in vivo.

Results

Our results showed that intraperitoneally administered DA was present in the brain and induced neurodegenerative changes including apoptosis in the CA1 region of the hippocampus. DA also increased the expression of WDR35 mRNA and protein in a dose- and time-dependent manner in the hippocampus. In experiments using glutamate receptor antagonists, the AMPA/KA receptor antagonist NBQX significantly attenuated the DA-induced increase in WDR35 protein expression, but the NMDA receptor antagonist MK-801 did not. In addition, the radical scavenger edaravone significantly attenuated the DA-induced increase in WDR35 protein expression. Furthermore, NBQX and edaravone significantly attenuated the DA-induced increase in p38 MAPK phosphorylation.

Conclusion

In summary, our results indicated that DA activated AMPA/KA receptors and induced ROS production and p38 MAPK phosphorylation, resulting in an increase in the expression of WDR35 in vivo.  相似文献   

12.

Background

Neurogenesis continues to occur throughout life but dramatically decreases with increasing age. This decrease is mostly related to a decline in proliferative activity as a result of an impoverishment of the microenvironment of the aged brain, including a reduction in trophic factors and increased inflammation.

Results

We determined that human umbilical cord blood mononuclear cells (UCBMC) given peripherally, by an intravenous injection, could rejuvenate the proliferative activity of the aged neural stem/progenitor cells. This increase in proliferation lasted for at least 15 days after the delivery of the UCBMC. Along with the increase in proliferation following UCBMC treatment, an increase in neurogenesis was also found in the aged animals. The increase in neurogenesis as a result of UCBMC treatment seemed to be due to a decrease in inflammation, as a decrease in the number of activated microglia was found and this decrease correlated with the increase in neurogenesis.

Conclusion

The results demonstrate that a single intravenous injection of UCBMC in aged rats can significantly improve the microenvironment of the aged hippocampus and rejuvenate the aged neural stem/progenitor cells. Our results raise the possibility of a peripherally administered cell therapy as an effective approach to improve the microenvironment of the aged brain.  相似文献   

13.

Background

Junctional adhesion molecule-A (JAM-A) is an adhesive protein expressed in various cell types. JAM-A localizes to the tight junctions between contacting endothelial and epithelial cells, where it contributes to cell-cell adhesion and to the control of paracellular permeability.

Results

So far, the expression pattern of JAM-A has not been described in detail for the different cell types of the adult brain. Here we show that a subset of proliferating cells in the adult mouse brain express JAM-A. We further clarify that these cells belong to the lineage of NG2-glia cells. Although these mitotic NG2-glia cells express JAM-A, the protein never shows a polarized subcellular distribution. Also non-mitotic NG2-glia cells express JAM-A in a non-polarized pattern on their surface.

Conclusions

Our data show that JAM-A is a novel surface marker for NG2-glia cells of the adult brain.  相似文献   

14.

Background

Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic level (MRI voxel), because of large variances in brain local volumes. In the present study, we aimed at finding brain areas that most discriminate dyslexic from control normal readers despite the large variance across subjects. After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's brain was then classified independently at each voxel as being within or outside the normal range. We used this simple strategy to build a brain map showing regional percentages of differences between groups. The significance of this map was then assessed using a randomization technique.

Results

The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed the most between groups with 100% of the dyslexic subjects (N = 38) falling outside of the control group (N = 39) 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive (LCD) grey matter volumes than controls and subjects with higher cerebellar declive (HCD) grey matter volumes than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted in dyslexic subjects, so that lower and higher lentiform grey matter volumes compared to controls differently modulated the phonological and lexical performances. Best performances (observed in controls) corresponded to an optimal value of grey matter and they dropped for higher or lower volumes.

Conclusion

These results provide evidence for the existence of various subtypes of dyslexia characterized by different brain phenotypes. In addition, behavioural analyses suggest that these brain phenotypes relate to different deficits of automatization of language-based processes such as grapheme/phoneme correspondence and/or rapid access to lexicon entries.  相似文献   

15.

Background

Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects.

Results

Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus.

Conclusions

Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.  相似文献   

16.

Background  

MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2). Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA) leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126.  相似文献   

17.

Background

To date, some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures. Efficient analytical strategies are required to enable rapid, reliable, quantitative analysis of neuronal morphology in these valuable model systems.

Results

Here we present the development and validation of a novel bioinformatics pipeline called NeuriteQuant. This tool enables fully automated morphological analysis of large-scale image data from neuronal cultures or brain sections that display a high degree of complexity and overlap of neuronal outgrowths. It also provides an efficient web-based tool to review and evaluate the analysis process. In addition to its built-in functionality, NeuriteQuant can be readily extended based on the rich toolset offered by ImageJ and its associated community of developers. As proof of concept we performed automated screens for modulators of neuronal development in cultures of primary neurons and neuronally differentiated P19 stem cells, which demonstrated specific dose-dependent effects on neuronal morphology.

Conclusions

NeuriteQuant is a freely available open-source tool for the automated analysis and effective review of large-scale high-content screens. It is especially well suited to quantify the effect of experimental manipulations on physiologically relevant neuronal cultures or brain sections that display a high degree of complexity and overlap among neurites or other cellular structures.  相似文献   

18.

Background

Agomelatine is a melatonergic receptor agonist and a 5HT2C receptor antagonist that has shown antidepressant efficacy. In order to analyze separately the effect of the two receptorial components, rats were chronically treated with agomelatine, melatonin (endogenous melatonergic agonist), or S32006 (5-HT2C antagonist), and then subjected to acute footshock-stress.

Results

Only chronic agomelatine, but not melatonin or S32006, completely prevented the stress-induced increase of glutamate release in the rat prefrontal/frontal cortex.

Conclusions

These results suggest a potential synergy between melatonergic and serotonergic pathways in the action of agomelatine.  相似文献   

19.

Background  

Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP), HFE, neogenin (NEO1), transferrin receptor 1 (TFRC), transferrin receptor 2 (TFR2), and hemojuvelin (HFE2) in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines.  相似文献   

20.

Background

Adenosine is known to act as a neuromodulator by suppressing synaptic transmission in the central and peripheral nervous system. Both the release of adenosine within the small intestine and the presence of adenosine receptors on enteric neurons have been demonstrated. The aim of the present study was to characterize a possible involvement of adenosine receptors in the modulation of the myenteric reflex. The experiments were carried out on ileum segments 10 cm in length incubated in an single chambered organ bath, and the reflex response was initiated by electrical stimulation (ES).

Results

ES caused an ascending contraction and a descending relaxation followed by a contraction. All motility responses to ES were completely blocked by tetrodotoxin, indicating that they are mediated by neural mechanisms. Atropine blocked the contractile effects, whereas the descending relaxation was significantly increased. The A1 receptor agonist N6-cyclopentyladenosine increased the ascending contraction, whereas the ascending contraction was reduced by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. Activation of the A1 receptor further reduced the descending relaxation and the latency of the peristaltic reflex. The A2B receptor antagonist alloxazine increased ascending contraction, whereas descending relaxation remained unchanged. For A2A and A3 receptors, we found contradictory effects of the agonists and antagonists, thus there is no clear physiological role for these receptors at this time.

Conclusions

This study suggests that the myenteric ascending and descending reflex response of the rat small intestine is modulated by release of endogenous adenosine via A1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号