首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The impact of flexoelectricity on the imprint behavior in ferroelectric thin films has been investigated within the framework of Landau-Khalatnikov theory, by incorporating the coupling effect between the stress gradient and polarization. It is found that the imprint phenomenon can be in part induced by flexoelectricity. In the presence of flexoelectric coupling, the compressive stress shifts the hysteresis loop to the negative electric field axis, but the tensile stress shifts it to the opposite direction, which is in good agreement with experimental result. Besides, the characteristic length of stress distribution has a significant influence on the upper part of hysteresis loop. It highlights the pressing need to avoid the stress gradient in order to prevent degradation of device performance in ferroelectric thin films.  相似文献   

2.
Quality pyroelectric Ba0.8Sr0.2TiO3 films have been successfully fabricated by a sol-gel processing using a highly diluted precursor solution. The remnant polarization of the films decreases with the temperature increasing, which results in a large pyroelectric coefficient at room temperature. Infrared response measured using a 500-K chopped blackbody at room temperature exhibits a typical pyroelectric response waveform. Frequency dependence of the infrared response measurement for a pixel with area of 2.5×10-3 cm2 showed that the maximum response output voltage of 3.2 mV was obtained at 6 Hz. Better infrared response can be expected by the improvement in thermal isolation of the pixels and electrode materials. Received: 26 April 2000 / Accepted: 9 May 2000 / Published online: 9 August 2000  相似文献   

3.
Barium strontium titanate (Ba0.8Sr0.2TiO3) films with good ferroelectricity have been obtained by a developed sol-gel processing, using a 0.05-M spin-on solution. X-ray diffraction and Raman spectroscopy investigations showed that the Ba0.8Sr0.2TiO3 film exhibited a tetragonal structure at room temperature. Field-emission scanning electron microscopy measurements revealed that large columnar grains with the size of 100 to 200 nm in the film were formed from the highly dilute spin-on solution with layer-by-layer homoepitaxy. Electrical measurements for the prepared Ba0.8Sr0.2TiO3 film showed a remnant polarization of 3.5 μC/cm2, a coercive field of 53 kV/cm, two distinctive phase transitions, lower dissipation factor, and good insulating properties. These results indicate the sol-gel-derived Ba0.8Sr0.2TiO3 film from a 0.05-M solution is suitable for uncooled infrared detector applications. Received: 19 August 1999 / Accepted: 11 October 1999 / Published online: 1 March 2000  相似文献   

4.
3 films were produced by KrF excimer-laser ablation. Films deposited on fused silica substrates were polycrystalline without preferential orientation and had cubic rather than tetragonal structure. BaTiO3/Au/Ti/fused silica films showed a large dielectric constant, which increased with the thickness of the film, but poor ferroelectric properties. This behavior seems to be related to the small size of grains. On (100)MgO substrates oriented films were obtained. BaTiO3/YBa2Cu3O7-δ/(100)MgO films showed a large dielectric constant also and improved ferroelectric properties. Although this indicates a larger degree of tetragonality, the tetragonal structure of single crystal BaTiO3 has not yet developed. Localized reduction and metallization of BaTiO3/(100)MgO films by means of Ar+-laser radiation was demonstrated. This technique allows to produce conducting patterns in a single-s tep process. Received: 6 January 1997/Accepted: 21 April 1997  相似文献   

5.
J.B. Xu  B. Shen 《Applied Surface Science》2009,255(11):5922-5925
The highly (1 0 0)-oriented BaTiO3 thin films were fabricated on LaNiO3(1 0 0)/Pt/Ti/SiO2/Si substrates under low-temperature conditions. Substrate temperatures throughout the fabrication process remained at or below 400 °C, which allows this process to be compatible with many materials commonly used in integrated circuit manufacturing. X-ray diffraction data provided the evidence for single BaTiO3 phase. Field-emission scanning electron microscopy was used to study the columnar structure of the films. The dielectric properties as a function of frequency in the range of 1 kHz to 1 MHz was obtained. The room temperature remanent polarization (2Pr) and coercive field were found to be ∼5 μC/cm2 and 50 kV/cm, respectively. The BTO film maintains an excellent fatigue-free character even after 109 switching cycles.  相似文献   

6.
A Monte Carlo algorithm for dynamic hysteresis simulation in ferroelectric spin systems is developed based on a DIFFOUR model in which the local spontaneous polarization is defined by the double-well potential energy and the nearest-neighbor spin interaction as well as an external electrical field of variable amplitude and frequency. A direct measurement of the hysteresis loop for ferroelectric Pb(Zr0.52Ti0.48)O3 thin film capacitors using the Sawyer–Tower technique is performed. Significant dependence of the hysteresis shape and pattern on the external field is revealed. Direct imaging of the simulated domain pattern indicates serious suppression of the domain switching over the high-frequency range. The evaluated scaling relations from the simulation for remanence, coercivity, and the area of the hysteresis over the low-frequency range are supported by theoretical predictions and experiments, but the high-frequency scaling behaviors as derived are different from one and another. Received: 23 January 2001 / Accepted: 17 August 2001 / Published online: 20 December 2001  相似文献   

7.
Lanthanum doped bismuth titanate thin films (Bi3.25La0.75Ti3O12 - BLT) were produced by the polymeric precursor method and crystallized in a domestic microwave oven and in conventional furnace. Using platinum coated silicon substrates configuration, ferroelectric properties of the films were determined with remanent polarization Pr and a coercive field Ec of 3.9 μC/cm2 and 70 kV/cm for the film annealed in the microwave oven and 20 μC/cm2 and 52 kV/cm for the film annealed in conventional furnace, respectively. The films annealed in conventional furnace exhibited excellent retention-free characteristics at low infant periods indicating that BLT thin films can be a promise material for use in non-volatile memories. On the other hand, the pinning of domains wall causes a strong decay at low infant periods for the films annealed in the microwave furnace which makes undesireable the application for future FeRAMS memories.  相似文献   

8.
3 thin films have been prepared by metalorganic chemical vapor deposition under reduced pressure. The formation of ferroelectric domains in films grown on SrTiO3 and LaAlO3 substrates was investigated by synchrotron radiation and Rutherford backscattering spectroscopy. Single-domain (3000-Å thick) and multi-domain (4500-Å thick) PbTiO3 films were produced on SrTiO3. For multi-domain PbTiO3 film, the c-domain presented epitaxial structure with its c-axis perpendicular to the substrate surface, while a-domains aligned four-fold symmetrically with c-domains by 2.79° off the c-axis of c-domains. In the film, the measured lattice constants (a, b and c) of the a- and c-domains were different from each other, indicating that the films suffered a modulated strain during domain formation. In contrast, both the a and c domains of films on LaAlO3 were alternatively aligned on substrate with the a-axis of the a-domain and the c-axis of c-domains perpendicular to the substrate surface. Two-dimensional distribution of these domains is proposed and the formation of these kinds of domains is discussed. The surface morphology and phase transition process of single and multi domain PbTiO3 film on SrTiO3 were studied by atomic force microscope (AFM) and high temperature X-ray diffraction, respectively. Received: 15 August 1996/Accepted: 21 January 1997  相似文献   

9.
Sol-gel spin-coated ZnO thin films are cooled with different rates after the pre-heat treatment. Atomic force microscopy (AFM), X-ray diffraction (XRD), Raman, and photoluminescence (PL) were carried out to investigate the effects of the cooling rate during pre-heat treatment on structural and optical properties of the ZnO thin films. The ZnO thin films cooled slowly exhibit mountain chain structure while the ones cooled rapidly have smooth surface. The ZnO thin films cooled rapidly have higher c-axis orientation compared to the ones cooled slowly. The narrower and the higher near-band-edge emission (NBE) peaks are observed in the ZnO thin films cooled rapidly.  相似文献   

10.
Ferroelectric SrBi2Ta2O9 (SBT) films were grown by pulsed-laser deposition (PLD) at different substrate temperatures and fluences. A correlation between film structure and ferroelectric properties is established. The dielectric function ε of thin SBT films shows a Curie–Weiss behavior well below the peak temperature Tmax and relaxor-like behavior in the vicinity of Tmax. Domain walls have a strong influence on the dielectric and ferroelectric properties and on the polarization fatigue of SBT films below 100 °C. The formation of ferroelectric phases is favored at lower substrate temperatures by incorporating Bi2O3 template layers into the structure. Received: 18 March 1999 / Accepted: 19 March 1999 / Published online: 5 May 1999  相似文献   

11.
We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3 mol% Y2O3-doped ZrO2 (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6 eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films.  相似文献   

12.
The (Pb0.90La0.10)Ti0.975O3/PbTiO3 (PLT/PT), PbTiO3/(Pb0.90La0.10)Ti0.975O3/PbTiO3 (PT/PLT/PT) multilayered thin films with a PbOx buffer layer were in situ deposited by RF magnetron sputtering at the substrate temperature of 600 °C. With this method, highly (1 0 0)-oriented PLT/PT and PT/PLT/PT multilayered thin films were obtained. The PbOx buffer layer leads to the (1 0 0) orientation of the films. The dielectric, ferroelectric and pyroelectric properties of the PLT multilayered thin films were investigated. It is found that highly (1 0 0)-oriented PT/PLT/PT multilayered thin films possess higher remnant polarization 2Pr (44.1 μC/cm2) and better pyroelectric coefficient at room temperature p (p = 2.425 × 10−8 C/cm2 K) than these of PLT and PLT/PT thin films. These results indicate that the design of the PT/PLT/PT multilayered thin films with a PbOx buffer layer should be an effective way to enhance the dielectric, ferroelectric and pyroelectric properties. The mechanism of the enhanced ferroelectric properties was also discussed.  相似文献   

13.
(001)-oriented strontium bismuth tantalate thin films have been grown on Pt/TiO2/SiO2/Si (100) substrates by pulsed laser deposition. The room-temperature current–electric field dependence of the films has been investigated, which revealed a space-charge-limited conduction mechanism. The microstructures of grain boundaries and structural defects in these films were also examined by transmission electron microscopy and high-resolution transmission electron microscopy, respectively. The grains of the films deposited at 550 °C exhibited polyhedral morphologies, and the average grain size was about 50 nm in length and 35 nm in width. At a small misorientation angle (8.2°) tilt boundary, a regular array of edge dislocations with about 3-nm periodic distance was observed, and localized strain contrast near the dislocation cores was also observed. The Burgers vector b of the edge dislocation was determined to be [110]. At a high misorientation angle (39.0°) tilt grain boundary lattice strain contrast associated with the distortion of lattice planes was observed, and the mismatching lattice images occurred at about 2 nm along the boundary. The relationship between microstructural defects at grain boundaries and leakage currents of these films is also discussed. Received: 8 September 2000 / Accepted: 18 December 2000 / Published online: 28 February 2001  相似文献   

14.
Thermally stimulated current (TSC) measurements performed in the 100 K–400 K temperature range on Bi4Ti3O12 (BiT) thin films annealed at 550 °C and 700 °C had revealed two trapping levels having activation energies of 0.55 eV and 0.6 eV. The total trap concentration was estimated at 1015 cm−3 for the samples annealed at 550 °C and 3×1015 cm−3 for a 700 °C annealing and the trap capture cross-section was estimated about 10−18 cm2. From the temperature dependence of the dark current in the temperature range 20 °C–120 °C the conduction mechanism activation energy was found to be about 0.956–0.978 eV. The electrical conductivity depends not only on the sample annealing temperature but also whether the measurement is performed in vacuum or air. The results on the dark conductivity are discussed considering the influence of oxygen atoms and oxygen vacancies. Received: 28 January 1998 / Accepted: 8 January 1999 / Published online: 5 May 1999  相似文献   

15.
BaxSr1-xTiO3 thin films with a compositional gradient of x=0.3 to 1 (in 0.1 mole fraction increments) were fabricated on Pt/Ti/SiO2/Si substrates using a modified sol–gel technique. The graded film crystallised in a perovskite structure and consists of a uniform microstructure with comparatively larger grains. The room-temperature relative dielectric constant (εr) and dielectric loss (cosδ) at 100 kHz were found to be 305 and 0.03 respectively. Dielectric peaks were not observed in the temperature range from -20 °C to 120 °C. The dielectric constant and dielectric loss were almost independent of temperature. Polarisation–electric field measurements at room temperature revealed a saturated but slim hysteresis loop with a remanent polarisation (Pr) of 0.6 μC/cm2 and a coercive field (Ec) of 2.4 kV/mm. The graded film behaves as a stack of BaxSr1-xTiO3 capacitors connected in series and hence the dielectric Curie peaks are removed. Received: 4 October 2001 / Accepted: 17 October 2001 / Published online: 23 January 2002  相似文献   

16.
In this paper, effects of Fe doping on crystallinity, microstructure and photoluminescence (PL) properties of sol-gel derived SnO2 thin films are reported. It is shown that doping of Fe3+ ions leads to crystallite size reduction and higher strain in SnO2 thin films. The room temperature PL spectra show marked changes in intensity and blue-shift of the emission lines upon Fe doping. These observations have been correlated with structural changes and defect chemistry of Fe doped SnO2 thin films.  相似文献   

17.
Applied Physics A - The research work in this letter is on the microtribological properties of poly(ether ketone ketone) (PEKK) and sulfonated PEKK (S-PEKK) thin films. Polystyrene (PS) was used as...  相似文献   

18.
Neodymium (III) oxide nanocrystal/titania/organically-modified silane (ormosil) composite thin films have been prepared using a chemical approach consisting of a combination of inverse microemulsion and sol-gel techniques at low temperature. Transmission electron microscopy shows that the neodymium (III) oxide nanoparticles have a needle-like nanocrystal structure. A strong room temperature emission at 1064 nm, corresponding to the 4 F 3/2?4 I 11/2 transition, has been observed as a function of the heat treatment temperature used for the production of the composite thin films. In addition to this emission, two other main emissions at 890 nm and at 1336 nm have also been observed. In particular, there was a clear shoulder peak at 1145 nm, probably be due to the host matrix, which was observed in all the measured samples and this shoulder peak gave a maximum intensity after heat treatment at 300 °C. Received: 6 September 2000 / Accepted: 15 November 2000 / Published online: 20 June 2001  相似文献   

19.
The Fourier transform infrared (FTIR) spectra and switching current response in sodium nitrite:poly(vinyl alcohol) nanocomposite films have been studied as a function of composition of NaNO2. The switching current data fitted well to infinite-grain model (IGM) in the region t<t s and to finite-grain model (FGM) in the region tt s . The microscopic parameters like the dimensionality, the domain wall velocity, and the nucleation rate have been evaluated which provide more physical insight of the switching phenomena in the composite films. The polarization current and nucleation rate are optimum in 50 wt.% composite film and have been discussed in terms of grain size and strain variations with the composition. The effect of applied field and pulse width variation on the switching behavior of 50 wt.% composition has also been studied. The exponential field dependence of the domain wall velocity and the nucleation rate indicate that nucleation mechanism is responsible for switching phenomena in the composite films. The writing pulse width affects significantly on the switching behavior of the composite films.  相似文献   

20.
T /nS of nT rearrangements and nS atoms in the spike volume as the crucial parameter characterizing the ability of a given ion–target combination to achieve complete rearrangement of the spike volume. nT/nS>1 is the optimum condition for diamondlike film growth. For aC films the ion energy dependence of nT/nS agrees well with the measured sp3 bond fraction. For Ar+-ion-assisted deposition of aC we find nT/nS>1 above 50 eV with no pronounced ion energy dependence. Furthermore, our model predicts optimum conditions for the formation of cubic boron nitride between 50 eV and 3 keV. Accepted: 14 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号