首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A recently proposed micromechanics model is employed to generate initial yield surfaces of unidirectional and cross-ply metal matrix composites under a variety of loading conditions. The yield surfaces are calculated using two different methodologies: on the basis of local matrix stresses and average stresses in the entire matrix phase. It is shown that the results obtained on the basis of local matrix stresses correlate very well with finite-element predictions for most loading directions considered in the present investigation. A critical direction or cone of directions is found that should be avoided with the outlined micromechanics model. This direction corresponds to a particular combination of longitudinal tension (compression) and equal biaxial transverse tension (compression) whose ratio is a function of the constituent properties.It is also illustrated that the results generated on the basis of average matrix stresses generally underestimate initial yielding (i.e., predict higher yield stresses), the extent of which may be significant depending on the direction of loading. Thus, the use of average matrix stresses in analyzing elastoplastic response of composites should be approached with caution.  相似文献   

4.
Based on a six parameter general anisotropic yield surface proposed earlier by Voyiadjis and Thiagarajan (An Anisotropic Yield Surface Model for Directionally Reinforced Metal Matrix Composites, Int. J. Plasticity [1995]), a cyclic plasticity model to model the behavior of directionally reinforced metal matrix composite, has been proposed here. Apart from being able to model different initial yielding behavior along different stress directions, a number of features have been incorporated into the plasticity model. They include the usage of a proposed non-associative flow rule, kinematic hardening rule of Phillips type, a modified form of the bounding surface model for modelling the cyclic behavior, and the usage of a proposed form for evaluating the plastic modulus for anisotropic materials. Previous experimental data have been used for the evaluation of the yield surface parameters as well as those for the determination of the plastic modulus. The stress-strain results generated from the model have then been compared with those from the experiments. The behavior of the model under certain simulated cyclic loading situations has also been presented.  相似文献   

5.
Metal matrix composites (MMCs) generally do not follow the classical plasticity theory, even though the matrix metals do deform plastically. A tension-compression yield asymmetry is typically observed in MMCs. For particulate-reinforced MMCs, this non-classical response is mainly due to the variation of damage evolution with loading modes. In this paper, a viscoplastic multi-axial constitutive model for plastic deformation of MMCs is constructed using the Mises-Schleicher yield criterion. The subsequent plastic flow is characterized by an associated and decomposed flow rule considering effects from both deviatoric and hydrostatic stresses. This model is capable of describing the multi-axial yield and flow behavior of MMCs by using simulated or measured asymmetric tensile and compressive stress-strain responses as input. As an example, the influence of damage evolution in terms of interfacial debonding in MMCs (obtained from FEM simulations) is incorporated through the different tensile and compressive stress-strain behaviors. Applying this model to predict the torsion and the pressure-dependant tensile responses of some commonly used MMCs provides good agreement with experimental data.  相似文献   

6.
The paper outlines the results of an experimental/analytical investigation of deformation and stress fields in the test section of graphite/epoxy and boron/aluminum Iosipescu specimens using high-resolution moiré interferometry and finite-element analysis. Very good correlation between experimental and analysis is demonstrated for the graphite/epoxy speciments. This, in turn, justifies the use of correction factors employed in the previous investigations to eliminate differences in the inital shear moduli obtained from 0-deg and 90-deg losipescu specimens. The significant discrepancies observed in the case of boron/aluminum specimens are attributed to localized yielding at the notch tips caused by the clamping action, the associated in-plane bending effects and changing boundary conditions due to slippage in the grips.Paper was presented at the 1989 SEM Spring Conference on Experimental Mechanics held in Cambridge, MA on May 28–June 1.  相似文献   

7.
A modified single-pulse loading split Hopkinson torsion bar (SSHTB) is introduced to investigate adiabatic shear banding behavior in SiCp particle reinforced 2024 Al composites in this work. The experimental results showed that formation of adiabatic shear band in the composite with smaller particles is more readily observed than that in the composite with larger particles. To characterize this size-dependent deformation localization behavior of particle reinforced metal matrix composites (MMCp), a strain gradient dependent shear instability analysis was performed. The result demonstrated that high strain gradient provides a deriving force for the formation of adiabatic shear banding in MMCp.  相似文献   

8.
In this work, the benefits from the blending between micro-structural fracture mechanics and elasto-plastic fracture mechanics in the analysis of fatigue damage in titanium metal matrix composites (TMCs) is presented. The efficiency of interfacial debonding and fibre bridging (FB) are shown not only to control crack growth but also to be responsible for severe crack growth changes taking place throughout the material's response under fatigue. A possible way to extract answers about the fatigue threshold, the operational life of the material and finally the fracture toughness is given in detail.  相似文献   

9.
Based on the Eshelby equivalent inclusion theory and Mori-Tanaka averaging method, a meso-mechanical cyclic elasto-plastic constitutive model is proposed to predict the ratchetting of particle-reinforced metal matrix composites. In the proposed model, a Hill-typed incremental formulation is used to simulate the elasto-plastic responses of the composites during cyclic loading with assumptions of elastic particle, elasto-plastic metal matrix and perfect interfacial bond between metal matrix and particles. A new nonlinear kinematic hardening rule extended from the Ohno-Abdel-Karim model [M. Abdel-Karim, N. Ohno, Kinematic hardening model suitable for ratchetting with steady-state, Int. J. Plasticity 16 (2000) 225-240] is employed to describe the ratchetting of metal matrix which dominates the ratchetting of the composites. With further assumption of spherical particles, the proposed meso-mechanical cyclic constitutive model is verified by comparing the predicted uniaxial ratchetting of SiCP/6061Al composites with corresponding experiments obtained at room temperature [G.Z. Kang, Uniaxial time-dependent ratchetting of SiCP/6061Al alloy composites at room and high temperature, Comp. Sci. Tech. 66 (2006) 1418-1430]. In the meantime, the effects of different tangent operators employed in the numerical implementation of the proposed model, i.e., continuum (or elasto-plastic) tangent operator Cep and algorithmic (or consistent) one Calg, on the predicted ratchetting are also discussed. It is concluded that the proposed model predicts the uniaxial ratchetting of SiCP/6061Al composites at room temperature reasonably.  相似文献   

10.
A creep-thermal cycling system with a constant stress cam has been designed to be inexpensive and easily fabricated in order to identify the creep and thermal-cycling damage mechanisms in metal-matrix composites (MMCs) with high ductility. The current system can be modified to be a stress thermal cycling (or fatigue) system.  相似文献   

11.
A phenomenological constitutive model for fibrous composite materials with a ductile matrix is postulated incorporating damage mechanics with micromechanical behavior. The model is first formulated in an undamaged composite system and then transformed consistently achieved in terms of an overall damage tensor M for the whole composite. In the process of formulating this model, interesting results are obtained demonstrating the necessity of using a non-associated flow rule for plasticity in the damaged composite system together with a Hill's type yield criterion. It is also shown that using a Ziegler-Prager kinematic hardening rule for the ductile matrix leads to a general kinematic hardening rule for the composite that is a combination of a generalized Ziegler-Prager model and a Phillips-type model. Finally, an explicit expression for the elastoplastic stiffness tensor for the damaged composite is obtained.  相似文献   

12.
A method for the generation of three-dimensional model microstructures resembling particle reinforced composites is developed based on the periodic Voronoi tessellation. The algorithm allows for the generation of arbitrary particle volume fractions and produces periodic geometries based on the erosion procedure suggested by Christoffersen (1983). A technique for the creation of high quality periodic spatial discretizations of the particle systems for application with the finite element method is described in detail. The developed procedure is extensively applied to metal ceramic composites (Al-SiCp) at volume fractions ranging from 10 to 80%. The elastic and thermo-elastic material properties are investigated and the effect of higher statistical moments (see, e.g., Torquato, 2002), i.e. of the particle shape and relative position, is evaluated in terms of constraint point sets used in the generation of the random microstructures.  相似文献   

13.
The homogenized response of metal matrix composites(MMC) is studied using strain gradient plasticity.The material model employed is a rate independent formulation of energetic strain gradient plasticity at the micro scale and conventional rate independent plasticity at the macro scale. Free energy inside the micro structure is included due to the elastic strains and plastic strain gradients. A unit cell containing a circular elastic fiber is analyzed under macroscopic simple shear in addition to transverse and longitudinal loading. The analyses are carried out under generalized plane strain condition. Micro-macro homogenization is performed observing the Hill-Mandel energy condition,and overall loading is considered such that the homogenized higher order terms vanish. The results highlight the intrinsic size-effects as well as the effect of fiber volume fraction on the overall response curves, plastic strain distributions and homogenized yield surfaces under different loading conditions. It is concluded that composites with smaller reinforcement size have larger initial yield surfaces and furthermore,they exhibit more kinematic hardening.  相似文献   

14.
The influence of an interphase region on the macroscopic strength of unidirectional fiber-reinforced metal-matrix composites (MMCs) is investigated. The three phases of the composite are supposed to be elastic-perfectly plastic and to conform with J2-plasticity. First, theoretical bounds to the macroscopic strength are derived, according to homogenization theory for heterogeneous periodic media: the gap between these bounds is quite narrow for certain stress conditions, volumetric proportions of the constituents, and ratios of the interphase-to-matrix strength. Then, a numerical model previously developed by Taliercio (2005) is employed to predict the macroscopic response of three-phase MMCs under any 3D stress through the analysis of a single representative unit cell. The model is applied to the numerical identification of the macroscopic strength properties of MMCs under uni-, bi- and triaxial stresses, in cases where the theoretical bounds are not sufficiently close to identify the actual macroscopic yield surface. The influence of the weakening interphase on the predicted macroscopic strength is critically discussed. A decrease in interphase strength is found to affect the transverse tensile and shear strength of the composite to a moderate extent, whereas the macroscopic longitudinal shear strength is extremely sensitive to the interphase strength.  相似文献   

15.
Two different approaches are used to evaluate the critical loads of the unidirectional fiber composites. They are based on the three-dimensional linearized elasticity theory. The constituents of the composite are assumed to have elastoplastic behavior. In the first approach, the composite is assumed to be homogeneous and orthotropic at the continuum level while the second approach assumes piecewise homogeneity where the fiber and matrix interaction at the interfaces are accounted for. For different ratios of the fiber and matrix moduli, critical loads and deformations are obtained and compared with experimental values.  相似文献   

16.
This three-part paper focuses on the effect of fiber architecture (i.e. shape and distribution) on the elastic and inelastic response of unidirectionally reinforced metal matrix composites (MMCs). The first part provides an annotated survey of the literature; it is presented as an historical perspective dealing with the effects of fiber shape and distribution on the response of advanced polymeric matrix composites and MMCs. A summary of the state of teh art will assist in defining new directions in this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well suited for studying the influence of these effects on the response of MMCs. This micromechanics model, referred to as the generalized method of cells (GMC), can predict the overall inelastic behavior of unidirectional, multiphase composites, given the properties of the constituents. The model is also general enough to predict the response of unidirectional composites that are reinforced by either continuous or discontinuous fibers, with different inclusion shapes and spatial arrangements, in the presence of either perfect or imperfect interfaces and/or interfacial layers. Recent developments on this promising model, as well as directions for future enhancements of the model's predictive capability, are included. Finally, the third part provides qualitative results generated by using GMC for a representative titanium matrix composite system, SCS-6/TIMETAL 21S. The results presented correctly demonstrate the relative effects of fiber arrangement and shape on the longitudinal and transverse stress-strain and creep behavior of MMCs, with both strong and weak fiber/matrix interfacial bonds. Fiber arrangements included square, square-diagonal, hexagonal and rectangular periodic arrays, as well as a random array. The fiber shapes were circular, square, and cross-shaped cross-sections. The effect of fiber volume fraction on the stress-strain response is also discussed, as is the thus-far poorly documented strain rate sensitivity effect. In addition to the well-documented features of the architecture-dependent behavior of continuously reinforced two-phase MMCs, new results are presented about continuous multiphase internal architectures. Specifically, the stress-strain and creep responses of composites with different size fibers and different internal arrangements and bond strengths are investigated; the aim was to determine the feasibility of using this approach to enhance the transverse toughness and creep resistance of titanium matrix composites (TMCs).  相似文献   

17.
The aim of this work is to construct yield surfaces to describe initial yielding and characterize hardening behavior of a highly anisotropic material. A methodology for constructing yield surfaces for isotropic materials using axial–torsion loading is extended to highly anisotropic materials. The technique uses a sensitive definition of yielding based on permanent strain rather than offset strain, and enables multiple yield points and multiple yield surfaces to be conducted on a single specimen. A target value of 20 × 10−6 is used for Al2O3 fiber reinforced aluminum laminates having a fiber volume fraction of 0.55. Sixteen radial probes are used to define the yield locus in the axial–shear stress plane. Initial yield surfaces for [04], [904], and [0/90]2 fibrous aluminum laminates are well described by ellipses in the axial–shear stress plane having aspect ratios of 10, 2.5, and 3.3, respectively. For reference, the aspect ratio of the Mises ellipse for an isotropic material is 1.73. Initial yield surfaces do not have a tension–compression asymmetry. Four overload profiles (plus, ex, hourglass, and zee) are applied to characterize hardening of a [0/90]2 laminate by constructing 30 subsequent yield surfaces. Parameters to describe the center and axes of an ellipse are regressed to the yield points. The results clearly indicate that kinematic hardening dominates so that material state evolution can be described by tracking the center of the yield locus. For a nonproportional overload of (στ) = (500, 70) MPa, the center of the yield locus translated to (στ) = (430, 37) MPa and the ellipse major axis was only 110 MPa.  相似文献   

18.
The Mori-Tanaka approach is used to modelling metal particulate-reinforced brittle matrix composites under cyclic compressive loading. The J2-flow theory is considered as the relevant physical law of plastic flow in inclusions. Ratchetting of the composite is prevented by the strong constraint exerted by the matrix on the inclusions, even under the assumption of evanescent kinematic hardening. However, the weakening constraint power of the matrix caused by microfracture damage around inclusions is closely coupled with the plasticity of inclusion and leads to ratchetting even when the plastic deformation of inclusions is described by an isotropic hardening rule. A detailed parametric study has revealed that ratchetting is followed by either plastic or elastic shakedown, depending on the load amplitude, composite parameters and the mean length of microcracks.  相似文献   

19.
A numerical simulation for predicting the axial creep-rupture lifetime of continuous fiber-reinforced metal matrix composites is proposed, based on the finite element method. The simulation model is composed of line elements representing the fibers and four-node isoparametric plane elements representing the matrix. While the fibers behave as an elastic body at all times, the matrix behaves as an elasto-plastic body at the loading process and an elasto-plastic creep body at the creep process. It is further assumed in the simulation that the fibers are fractured not only in stress criterion but time-dependently with random nature. Simulation results were compared with the creep-rupture lifetime data of a boron-aluminum composite with 10% fiber volume fraction experimentally obtained. The simulated creep-rupture lifetimes agreed well with the averages of the experimental data. The proposed simulation is further carried out to predict a possibility of creep-rupture for the composite without time-dependent fiber breakage. It is finally concluded that the creep-rupture of a boron-aluminum composite is closely related with the shear stress relaxation occurring in the matrix as well as time-dependent fiber breakage.  相似文献   

20.
IntroductionThecreepbehaviorofshortfiberreinforceMetalMatrixComposites (MMCs)dependsonthefollowingfactors,suchasthecreeppropertyofthematrix ,elasticandfracturespropertiesofthefiber,geometricparametersofthefibers,arrangementofthefibersandthepropertyofthef…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号