首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is devoted to the study of a fully discrete A ‐ finite element method to solve nonlinear Maxwell's equations based on backward Euler discretization in time and nodal finite elements in space. The nonlinearity is owing to a field‐dependent conductivity with the power‐law form . We design a nonlinear time‐discrete scheme for approximation in suitable function spaces. We show the well‐posedness of the problem, prove the convergence of the semidiscrete scheme based on the boundedness of the second derivative in the dual space and derive its error estimate. The Minty–Browder technique is introduced to obtain the convergence of the nonlinear term. Finally, we discuss the error estimate for the fully discretized problem and support the theoretical result by two numerical experiments. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 2083–2108, 2014  相似文献   

2.
The aim of this paper is to develop a fully discrete ( T ,ψ)‐ψe finite element decoupled scheme to solve time‐dependent eddy current problems with multiply‐connected conductors. By making ‘cuts’ and setting jumps of ψe across the cuts in nonconductive domain, the uniqueness of ψe is guaranteed. Distinguished from the traditional T ‐ ψ method, our decoupled scheme solves the potentials T and ψψe separately in two different simple equation systems, which avoids solving a saddle‐point equation system and leads to a remarkable reduction in computational efforts. The energy‐norm error estimate of the fully discrete decoupled scheme is provided. Finally, the scheme is applied to solve two benchmark problems—TEAM Workshop Problems 7 and IEEJ model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we study a numerical scheme to solve coupled Maxwell's equations with a nonlinear conductivity. This model plays an important role in the study of type‐II superconductors. The approximation scheme is based on backward Euler discretization in time and mixed conforming finite elements in space. We will prove convergence of this scheme to the unique weak solution of the problem and develop the corresponding error estimates. As a next step, we study the stability of the scheme in the quasi‐static limit ? → 0 and present the corresponding convergence rate. Finally, we support the theory by several numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we constructed the split‐step θ (SSθ)‐method for stochastic age‐dependent population equations. The main aim of this paper is to investigate the convergence of the SS θ‐method for stochastic age‐dependent population equations. It is proved that the proposed method is convergent with strong order 1/2 under given conditions. Finally, an example is simulated to verify the results obtained from the theory, and comparative analysis with Euler method is given, the results show the higher accuracy of the SS θ‐method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, Newmark time‐stepping scheme and edge elements are used to numerically solve the time‐dependent scattering problem in a three‐dimensional polyhedral cavity. Finite element methods based on the variational formulation derived in Van and Wood (Adv. Comput. Math., to appear) are considered. Existence and uniqueness of the discrete problem is proved by using Babuska–Brezzi theory. Finite element error estimate and stability of the Newmark scheme are also established. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
We show that (ℚω, +, σ, 0) is a quasi-minimal torsion-free divisible abelian group. After discussing the axiomatization of the theory of this structure, we present its ω-saturated quasi-minimal model. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We prove some convergence theorems for αψ‐pseudocontractive operators in real Hilbert spaces, by using the concept of admissible perturbation. Our results extend and complement some theorems in the existing literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
9.
In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ?Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integro‐differential equation, we study the Ulam‐Hyers stability and, also, the fractional Volterra integral equation in the Banach space, by means of the Banach fixed‐point theorem. As an application, we present the Ulam‐Hyers stability using the α‐resolvent operator in the Sobolev space .  相似文献   

10.
We consider a time‐dependent and a stationary convection‐diffusion equation. These equations are approximated by a combined finite element – finite volume method: the diffusion term is discretized by Crouzeix‐Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the nonstationary case, we use an implicit Euler approach for time discretization. This scheme is shown to be L2‐stable uniformly with respect to the diffusion coefficient. In addition, it turns out that stability is unconditional in the time‐dependent case. These results hold if the underlying grid satisfies a condition that is fulfilled, for example, by some structured meshes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 402–424, 2012  相似文献   

11.
A conservative two‐grid finite element scheme is presented for the two‐dimensional nonlinear Schrödinger equation. One Newton iteration is applied on the fine grid to linearize the fully discrete problem using the coarse‐grid solution as the initial guess. Moreover, error estimates are conducted for the two‐grid method. It is shown that the coarse space can be extremely coarse, with no loss in the order of accuracy, and still achieve the asymptotically optimal approximation as long as the mesh sizes satisfy in the two‐grid method. The numerical results show that this method is very effective.  相似文献   

12.
In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* - algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness of S(z) depends on the number of complex variables. The Multiplicative Decomposition theorem (0.1) sharpens the authors' Regularization theorem [11]; in case of the Band algebra L(X) of all bounded linear operators on a Band space, (0.1) has been proved by J. Letterer [20] for one complex variable and by M. 0. Zaidenberg, S. G. Krein, P. A. Kuchment and A. A. Pankov [26] for the Banach ideal of compact operators.  相似文献   

13.
This paper is concerned with the oscillation of numerical solution for the Nicholson's blowflies model. Using two kinds of θ‐methods, namely, the linear θ‐method and the one‐leg θ‐method, several conditions under which the numerical solution oscillates are derived. Moreover, it is shown that every non‐oscillatory numerical solution tends to equilibrium point of the original continuous‐time model. Finally, numerical experiments are provided to illustrate the analytical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
H1‐Galerkin mixed finite element method combined with expanded mixed element method is discussed for nonlinear pseudo‐parabolic integro‐differential equations. We conduct theoretical analysis to study the existence and uniqueness of numerical solutions to the discrete scheme. A priori error estimates are derived for the unknown function, gradient function, and flux. Numerical example is presented to illustrate the effectiveness of the proposed scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
The concept of (α,ψ)‐contractions was introduced by Samet et al. in this paper, we introduce (α,ψ)‐generalized contractions in a Hausdorff partial metric space. We discuss its significance and obtain some common fixed point theorems for a pair of self‐mappings. Some examples are given to support the theory.  相似文献   

16.
We study S‐asymptotically ω‐periodic mild solutions of the semilinear Volterra equation u′(t)=(a* Au)(t)+f(t, u(t)), considered in a Banach space X, where A is the generator of an (exponentially) stable resolvent family. In particular, we extend the recent results for semilinear fractional integro‐differential equations considered in (Appl. Math. Lett. 2009; 22:865–870) and for semilinear Cauchy problems of first order given in (J. Math. Anal. Appl. 2008; 343(2): 1119–1130). Applications to integral equations arising in viscoelasticity theory are shown. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
For the Poisson equation on rectangular and brick meshes it is well known that the piecewise linear conforming finite element solution approximates the interpolant to a higher order than the solution itself. In this article, this type of supercloseness property is established for a special interpolant of the Q2 ? P element applied to the 3D stationary Stokes and Navier‐Stokes problem, respectively. Moreover, applying a Q3 ? P postprocessing technique, we can also state a superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself. Finally, we show that inhomogeneous boundary values can be approximated by the Lagrange Q2‐interpolation without influencing the superconvergence property. Numerical experiments verify the predicted convergence rates. Moreover, a cost‐benefit analysis between the two third‐order methods, the post‐processed Q2 ? P discretization, and the Q3 ? P discretization is carried out. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

18.
This paper is devoted to the analysis of a linearized theta‐Galerkin finite element method for the time‐dependent coupled systems resulting from microsensor thermistor problems. Hereby, we focus on time discretization based on θ‐time stepping scheme with including the standard Crank‐Nicolson ( ) and the shifted Crank‐Nicolson ( , where δ is the time‐step) schemes. The semidiscrete formulation in space is presented and optimal error bounds in L2‐norm and the energy norm are established. For the fully discrete system, the optimal error estimates are derived for the standard Crank‐Nicolson, the shifted Crank‐Nicolson, and the general case where with k=0,1 . Finally, numerical simulations that validate the theoretical findings are exhibited.  相似文献   

19.
This study presents a robust modification of Chebyshev ? ‐weighted Crank–Nicolson method for analyzing the sub‐diffusion equations in the Caputo fractional sense. In order to solve the problem, by discretization of the sub‐fractional diffusion equations using Taylor's expansion a linear system of algebraic equations that can be analyzed by numerical methods is presented. Furthermore, consistency, convergence, and stability analysis of the suggested method are discussed. In this framework, compact structures of sub‐diffusion equations are considered as prototype examples. The main advantage of the proposed method is that, it is more efficient in terms of CPU time, computational cost and accuracy in comparing with the existing ones in open literature.  相似文献   

20.
In this report, we give a semi‐discrete defect correction finite element method for the unsteady incompressible magnetohydrodynamics equations. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear magnetohydrodynamics equations is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect‐correction technique. Then, we give the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. In order to show the effect of our method, some numerical results are shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号