首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let be the orientable surface of genus and denote by the class of all graphs on vertex set with edges embeddable on . We prove that the component structure of a graph chosen uniformly at random from features two phase transitions. The first phase transition mirrors the classical phase transition in the Erd?s‐Rényi random graph chosen uniformly at random from all graphs with vertex set and edges. It takes place at , when the giant component emerges. The second phase transition occurs at , when the giant component covers almost all vertices of the graph. This kind of phenomenon is strikingly different from and has only been observed for graphs on surfaces.  相似文献   

2.
3.
We count orientations of avoiding certain classes of oriented graphs. In particular, we study , the number of orientations of the binomial random graph in which every copy of is transitive, and , the number of orientations of containing no strongly connected copy of . We give the correct order of growth of and up to polylogarithmic factors; for orientations with no cyclic triangle, this significantly improves a result of Allen, Kohayakawa, Mota, and Parente. We also discuss the problem for a single forbidden oriented graph, and state a number of open problems and conjectures.  相似文献   

4.
We discuss the length of the longest directed cycle in the sparse random digraph , constant. We show that for large there exists a function such that a.s. The function where is a polynomial in . We are only able to explicitly give the values , although we could in principle compute any .  相似文献   

5.
We consider supercritical bond percolation on a family of high‐girth ‐regular expanders. The previous study of Alon, Benjamini and Stacey established that its critical probability for the appearance of a linear‐sized (“giant”) component is . Our main result recovers the sharp asymptotics of the size and degree distribution of the vertices in the giant and its 2‐core at any . It was further shown in the previous study that the second largest component, at any , has size at most for some . We show that, unlike the situation in the classical Erd?s‐Rényi random graph, the second largest component in bond percolation on a regular expander, even with an arbitrarily large girth, can have size for arbitrarily close to 1. Moreover, as a by‐product of that construction, we answer negatively a question of Benjamini on the relation between the diameter of a component in percolation on expanders and the existence of a giant component. Finally, we establish other typical features of the giant component, for example, the existence of a linear path.  相似文献   

6.
Mossel and Ross raised the question of when a random coloring of a graph can be reconstructed from local information, namely, the colorings (with multiplicity) of balls of given radius. In this article, we are concerned with random 2-colorings of the vertices of the -dimensional hypercube, or equivalently random Boolean functions. In the worst case, balls of diameter are required to reconstruct. However, the situation for random colorings is dramatically different: we show that almost every 2-coloring can be reconstructed from the multiset of colorings of balls of radius 2. Furthermore, we show that for , almost every -coloring can be reconstructed from the multiset of colorings of 1-balls.  相似文献   

7.
Write for the cycle space of a graph G, for the subspace of spanned by the copies of the κ‐cycle in G, for the class of graphs satisfying , and for the class of graphs each of whose edges lies in a . We prove that for every odd and , so the 's of a random graph span its cycle space as soon as they cover its edges. For κ = 3 this was shown in [6].  相似文献   

8.
Improving a result of Dyer, Frieze and Greenhill [Journal of Combinatorial Theory, Series B, 2015], we determine the q‐colorability threshold in random k‐uniform hypergraphs up to an additive error of , where . The new lower bound on the threshold matches the “condensation phase transition” predicted by statistical physics considerations [Krzakala et al., PNAS 2007].  相似文献   

9.
We study a noisy graph isomorphism problem, where the goal is to perfectly recover the vertex correspondence between two edge‐correlated graphs, with an initial seed set of correctly matched vertex pairs revealed as side information. We show that it is possible to achieve the information‐theoretic limit of graph sparsity in time polynomial in the number of vertices n. Moreover, we show the number of seeds needed for perfect recovery in polynomial‐time can be as low as in the sparse graph regime (with the average degree smaller than ) and in the dense graph regime, for a small positive constant . Unlike previous work on graph matching, which used small neighborhoods or small subgraphs with a logarithmic number of vertices in order to match vertices, our algorithms match vertices if their large neighborhoods have a significant overlap in the number of seeds.  相似文献   

10.
We consider column‐sparse covering integer programs, a generalization of set cover. We develop a new rounding scheme based on the partial resampling variant of the Lovász Local Lemma developed by Harris and Srinivasan. This achieves an approximation ratio of , where amin is the minimum covering constraint and is the maximum ?1‐norm of any column of the covering matrix A (whose entries are scaled to lie in [0, 1]). With additional constraints on the variable sizes, we get an approximation ratio of (where is the maximum number of nonzero entries in any column of A). These results improve asymptotically over results of Srinivasan and results of Kolliopoulos and Young. We show nearly‐matching lower bounds. We also show that the rounding process leads to negative correlation among the variables.  相似文献   

11.
We study approximate decompositions of edge‐colored quasirandom graphs into rainbow spanning structures: an edge‐coloring of a graph is locally ‐bounded if every vertex is incident to at most edges of each color, and is (globally) ‐bounded if every color appears at most times. Our results imply the existence of: (1) approximate decompositions of properly edge‐colored into rainbow almost‐spanning cycles; (2) approximate decompositions of edge‐colored into rainbow Hamilton cycles, provided that the coloring is ‐bounded and locally ‐bounded; and (3) an approximate decomposition into full transversals of any array, provided each symbol appears times in total and only times in each row or column. Apart from the logarithmic factors, these bounds are essentially best possible. We also prove analogues for rainbow ‐factors, where is any fixed graph. Both (1) and (2) imply approximate versions of the Brualdi‐Hollingsworth conjecture on decompositions into rainbow spanning trees.  相似文献   

12.
Motivated by the celebrated Beck‐Fiala conjecture, we consider the random setting where there are n elements and m sets and each element lies in t randomly chosen sets. In this setting, Ezra and Lovett showed an discrepancy bound when nm and an O(1) bound when n ? mt. In this paper, we give a tight bound for the entire range of n and m, under a mild assumption that . The result is based on two steps. First, applying the partial coloring method to the case when and using the properties of the random set system we show that the overall discrepancy incurred is at most . Second, we reduce the general case to that of using LP duality and a careful counting argument.  相似文献   

13.
We characterize the set of properties of Boolean‐valued functions on a finite domain that are testable with a constant number of samples (x,f(x)) with x drawn uniformly at random from . Specifically, we show that a property is testable with a constant number of samples if and only if it is (essentially) a k‐part symmetric property for some constant k, where a property is k‐part symmetric if there is a partition of such that whether satisfies the property is determined solely by the densities of f on . We use this characterization to show that symmetric properties are essentially the only graph properties and affine‐invariant properties that are testable with a constant number of samples and that for every constant , monotonicity of functions on the d‐dimensional hypergrid is testable with a constant number of samples.  相似文献   

14.
Motivated by the Erdos?‐Faber‐Lovász (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper‐edge sizes are bounded between i and inclusive, then there is a list edge coloring using colors. The dependence on n in the upper bound is optimal (up to the value of Ci,?).  相似文献   

15.
For graphs G and F, write if any coloring of the edges of G with colors yields a monochromatic copy of the graph F. Suppose is obtained from a graph S with s vertices and maximum degree d by subdividing its edges h times (that is, by replacing the edges of S by paths of length h + 1). We prove that there exists a graph G with no more than edges for which holds, provided that . We also extend this result to the case in which Q is a graph with maximum degree d on q vertices with the property that every pair of vertices of degree greater than 2 are distance at least h + 1 apart. This complements work of Pak regarding the size Ramsey number of “long subdivisions” of bounded degree graphs.  相似文献   

16.
For k ≥ 2 and r ≥ 1 such that k + r ≥ 4, we prove that, for any α > 0, there exists ε > 0 such that the union of an n‐vertex k‐graph with minimum codegree and a binomial random k‐graph with on the same vertex set contains the rth power of a tight Hamilton cycle with high probability. This result for r = 1 was first proved by McDowell and Mycroft.  相似文献   

17.
We study the q‐state ferromagnetic Potts model on the n‐vertex complete graph known as the mean‐field (Curie‐Weiss) model. We analyze the Swendsen‐Wang algorithm which is a Markov chain that utilizes the random cluster representation for the ferromagnetic Potts model to recolor large sets of vertices in one step and potentially overcomes obstacles that inhibit single‐site Glauber dynamics. Long et al. studied the case q = 2, the Swendsen‐Wang algorithm for the mean‐field ferromagnetic Ising model, and showed that the mixing time satisfies: (i) for , (ii) for , (iii) for , where βc is the critical temperature for the ordered/disordered phase transition. In contrast, for there are two critical temperatures that are relevant. We prove that the mixing time of the Swendsen‐Wang algorithm for the ferromagnetic Potts model on the n‐vertex complete graph satisfies: (i) for , (ii) for , (iii) for , and (iv) for . These results complement refined results of Cuff et al. on the mixing time of the Glauber dynamics for the ferromagnetic Potts model.  相似文献   

18.
Given a sequence , let r??,h(n) denote the number of ways n can be written as the sum of h elements of ??. Fixing h ≥ 2, we show that if f is a suitable real function (namely: locally integrable, O‐regularly varying and of positive increase) satisfying then there must exist with for which r??,h + ?(n) = Θ(f(n)h + ?/n) for all ? ≥ 0. Furthermore, for h = 2 this condition can be weakened to . The proof is somewhat technical and the methods rely on ideas from regular variation theory, which are presented in an appendix with a view towards the general theory of additive bases. We also mention an application of these ideas to Schnirelmann's method.  相似文献   

19.
We investigate the asymptotic structure of a random perfect graph Pn sampled uniformly from the set of perfect graphs on vertex set . Our approach is based on the result of Prömel and Steger that almost all perfect graphs are generalised split graphs, together with a method to generate such graphs almost uniformly. We show that the distribution of the maximum of the stability number and clique number is close to a concentrated distribution L(n) which plays an important role in our generation method. We also prove that the probability that Pn contains any given graph H as an induced subgraph is asymptotically 0 or or 1. Further we show that almost all perfect graphs are 2‐clique‐colorable, improving a result of Bacsó et al. from 2004; they are almost all Hamiltonian; they almost all have connectivity equal to their minimum degree; they are almost all in class one (edge‐colorable using Δ colors, where Δ is the maximum degree); and a sequence of independently and uniformly sampled perfect graphs of increasing size converges almost surely to the graphon .  相似文献   

20.
We show that for every there exists C > 0 such that if then asymptotically almost surely the random graph contains the kth power of a Hamilton cycle. This determines the threshold for appearance of the square of a Hamilton cycle up to the logarithmic factor, improving a result of Kühn and Osthus. Moreover, our proof provides a randomized quasi‐polynomial algorithm for finding such powers of cycles. Using similar ideas, we also give a randomized quasi‐polynomial algorithm for finding a tight Hamilton cycle in the random k‐uniform hypergraph for . The proofs are based on the absorbing method and follow the strategy of Kühn and Osthus, and Allen et al. The new ingredient is a general Connecting Lemma which allows us to connect tuples of vertices using arbitrary structures at a nearly optimal value of p. Both the Connecting Lemma and its proof, which is based on Janson's inequality and a greedy embedding strategy, might be of independent interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号