首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The motivation is driven by deposition processes based on chemical vapor problems. The underlying model problem is based on coupled transport–reaction equations with mobile and immobile areas. We deal with systems of ordinary and partial differential equations. Such equation systems are delicate to solve and we introduce a novel solver method, that takes into account ways to solve analytically parts of the transport and reaction equations. The main idea is to embed the analytical and semianalytical solutions, which can then be explicitly given to standard numerical schemes of higher order. The numerical scheme is based on flux‐based characteristic methods, which is a finite volume method. Such a method is an attractive alternative to the standard numerical schemes, which fully discretize the full equations. We instead reduce the computational time while embedding fast computable analytical parts. Here, we can accelerate the solver process, with a priori explicitly given solutions. We will focus on the derivation of the analytical solutions for general and special solutions of the characteristic methods that are embedded into a finite volume method. In the numerical examples, we illustrate the higher‐order method for different benchmark problems. Finally, the method is verified with realistic results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2012  相似文献   

2.
We perform a numerical study of solutions near homoclinic orbits for forced symmetry breaking of a PDE with O(2) symmetry to one with SO(2) symmetry. Taking particular care of the consequences of the continuous group action, we concentrate on the Kuramoto-Sivashinsky equation with spatially periodic boundary conditions. The breakup of structurally stable homoclinic cycles is investigated via the introduction of flux term that breaks the reflectional symmetry while retaining the translational symmetry. In particular, we note that although Chossat (1993) has proved that generic perturbations cause the appearance of quasiperiodic orbits, for the simplest possible flux terms this is not the case. We compare these results with numerical simulations of a Galerkin approximation of the equations.  相似文献   

3.
For Chebyshev spectral solutions of the forced Burgers equation with low values of the viscosity coefficient, several bifurcations and stable attractors can be observed. Periodic orbits, quasiperiodic and strange ones may arise. Bistability can also be observed. Necessary conditions for these attractors to appear are discussed and justification for the non emerging of bistability for an example of a system symmetry break is presented. As an application for the dynamical behavior of spectral solutions of Burgers equation, the dynamics and synchronization of unidirectionally coupling of Chebyshev spectral solutions of Burgers equations by means of a linear coupling are described and discussed. Also, a nonlinear coupling is proposed and discussed.  相似文献   

4.
In this paper, we compared two different methods, one numerical technique, viz Legendre multiwavelet method, and the other analytical technique, viz optimal homotopy asymptotic method (OHAM), for solving fractional‐order Kaup–Kupershmidt (KK) equation. Two‐dimensional Legendre multiwavelet expansion together with operational matrices of fractional integration and derivative of wavelet functions is used to compute the numerical solution of nonlinear time‐fractional KK equation. The approximate solutions of time fractional Kaup–Kupershmidt equation thus obtained by Legendre multiwavelet method are compared with the exact solutions as well as with OHAM. The present numerical scheme is quite simple, effective, and expedient for obtaining numerical solution of fractional KK equation in comparison to analytical approach of OHAM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
We will propose a unified algebraic method to construct Jacobi elliptic function solutions to differential–difference equations (DDEs). The solutions to DDEs in terms of Jacobi elliptic functions sn, cn and dn have a unified form and can be presented through solving the associated algebraic equations. To illustrate the effectiveness of this method, we apply the algorithm to some physically significant DDEs, including the discrete hybrid equation, semi‐discrete coupled modified Korteweg–de Vries and the discrete Klein–Gordon equation, thereby generating some new exact travelling periodic solutions to the discrete Klein–Gordon equation. A procedure is also given to determine the polynomial expansion order of Jacobi elliptic function solutions to DDEs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the analytical approximate traveling wave solutions of Whitham–Broer–Kaup (WBK) equations, which contain blow‐up solutions and periodic solutions, have been obtained by using the coupled fractional reduced differential transform method. By using this method, the solutions were calculated in the form of a generalized Taylor series with easily computable components. The convergence of the method as applied to the WBK equations is illustrated numerically as well as analytically. By using the present method, we can solve many linear and nonlinear coupled fractional differential equations. The results justify that the proposed method is also very efficient, effective and simple for obtaining approximate solutions of fractional coupled modified Boussinesq and fractional approximate long wave equations. Numerical solutions are presented graphically to show the reliability and efficiency of the method. Moreover, the results are compared with those obtained by the Adomian decomposition method (ADM) and variational iteration method (VIM), revealing that the present method is superior to others. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, we apply the homotopy perturbation method (HPM) to obtain approximate analytical solutions of the generalized Burger and Burger‐Fisher (B–F) equations. Several numerical examples are given to illustrate the efficiency of the HPM. Comparison of the result obtained by the present method with exact solution reveals that the accuracy and fast convergence of the new method. It is predicted that the HPM can be found wide application in engineering problems. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

8.
The purpose of this paper is to apply the Hamiltonian approach to nonlinear oscillators. The Hamiltonian approach is applied to derive highly accurate analytical expressions for periodic solutions or for approximate formulas of frequency. A conservative oscillator always admits a Hamiltonian invariant, H , which stays unchanged during oscillation. This property is used to obtain approximate frequency–amplitude relationship of a nonlinear oscillator with high accuracy. A trial solution is selected with unknown parameters. Next, the Ritz–He method is used to obtain the unknown parameters. This will yield the approximate analytical solution of the nonlinear ordinary differential equations. In contrast with the traditional methods, the proposed method does not require any small parameter in the equation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we combine the unified and the explicit exponential finite difference methods to obtain both analytical and numerical solutions for the Newell-Whitehead-Segel–type equations which are very important in mathematical biology. The unified method is utilized to obtain various solitary wave solutions for these equations. Numerical solutions of the specific case studies are investigated by using the explicit exponential finite difference method ensures the accuracy and reliability of the proposed scheme. After obtaining the approximate solutions, convergence analysis and error estimation (the error norms and absolute errors) are presented by comparing these results with the analytical obtained solutions and other methods in the literature through tables and graphs. The obtained analytical and numerical results are in good agreement.  相似文献   

10.
In this paper, the Bäcklund transformation of fractional Riccati equation is presented to establish traveling wave solutions for two nonlinear space–time fractional differential equations in the sense of modified Riemann–Liouville derivatives, namely, the space–time fractional generalized reaction duffing equation and the space–time fractional diffusion reaction equation with cubic nonlinearity. The proposed method is effective and convenient for solving nonlinear evolution equations with fractional order. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
On the basis of the F‐expansion method with a new sub‐equation and Exp‐function method, an improved F‐expansion method is introduced. As illustrative examples, the exact solutions expressed by exponential function, hyperbolic function of Kudryashov–Sinelshchikov equation for arbitrary α,β are derived. Some previous results are extended. The method is straightforward, concise and is a promising and powerful method for other nonlinear evolution equations in mathematical physics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The Cauchy problems for the Korteweg–de Vries–Burgers equation and the Benjamin–Bona– Mahony–Burgers equation are studied. Using subtle estimates of solutions to the linearized equations, the higher‐order terms of the asymptotic expansion as of solutions are derived. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
A second-order splitting method is applied to a KdV-like Rosenau equation in one space variable. Then an orthogonal cubic spline collocation procedure is employed to approximate the resulting system. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index 1. Error estimates in L2 and L norms have been obtained for the semidiscrete approximations. For the temporal discretization, the time integrator RADAU5 is used for the resulting system. Some numerical experiments have been conducted to validate the theoretical results and to confirm the qualitative behaviors of the Rosenau equation. Finally, orthogonal cubic spline collocation method is directly applied to BBM (Benjamin–Bona–Mahony) and BBMB (Benjamin–Bona–Mahony–Burgers) equations and the well-known decay estimates are demonstrated for the computed solution. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 695–716, 1998  相似文献   

14.
The capability of Extended tanh–coth, sine–cosine and Exp-Function methods as alternative approaches to obtain the analytic solution of different types of applied differential equations in engineering mathematics has been revealed. In this study, the generalized nonlinear Schrödinger (GNLS) equation is solved by three different methods. To obtain the single-soliton solutions for the equation, the Extended tanh–coth and sine–cosine methods are used. Furthermore, for this nonlinear evolution equation the Exp-Function method is applied to derive various travelling wave solution. Results show that while the first two procedures easily provide a concise solution, the Exp-Function method provides a powerful mathematical means for solving nonlinear evolution equations in mathematical physics.  相似文献   

15.
A discrete version of the Oort–Hulst–Safronov (OHS) coagulation equation is studied. Besides the existence of a solution to the Cauchy problem, it is shown that solutions to a suitable sequence of those discrete equations converge towards a solution to the OHS equation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Calgero–Bogoyavlenskii–Schiff (CBS) equation is analytically solved through two successive reductions into an ordinary differential equation (ODE) through a set of optimal Lie vectors. During the second reduction step, CBS equation is reduced using hidden vectors. The resulting ODE is then analytically solved through the singular manifold method in three steps; First, a Bäcklund truncated series is obtained. Second, this series is inserted into the ODE, and finally, a seminal analysis leads to a Schwarzian differential equation in the eigenfunction φ(η). Solving this differential equation leads to new analytical solutions. Then, through two backward substitution steps, the original dependent variable is recovered. The obtained results are plotted for several Lie hidden vectors and compared with previous work on CBS equation using Lie transformations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
In this work, the homotopy perturbation method (HPM), the variational iteration method (VIM) and the Adomian decomposition method (ADM) are applied to solve the Fitzhugh–Nagumo equation. Numerical solutions obtained by these methods when compared with the exact solutions reveal that the obtained solutions produce high accurate results. The results show that the HPM, the VIM and the ADM are of high accuracy and are efficient for solving the Fitzhugh–Nagumo equation. Also the results demonstrate that the introduced methods are powerful tools for solving the nonlinear partial differential equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, the Sawada–Kotera–Ito seventh‐order equation is studied. He's variational iteration method and Adomian's decomposition method (ADM) are applied to obtain solution of this equation. We compare these methods together. The study highlights the significant features of the employed methods and its capability of handling completely integrable equations. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 887–897, 2011  相似文献   

19.
In this paper, the Ginzburg-Landau equation with small complex coefficients is considered. A translation is introduced to transform the Ginzburg-Landau equation into a dynamical system. Moreover, the existence and the properties of the equilibria are discussed. The spatial quasiperiodic solutions disappear due to the perturbation are proved. Finally, several types of heteroclinic orbits are proposed and numerical analysis are provided.  相似文献   

20.
In this paper, we consider the analytical solutions of fractional partial differential equations (PDEs) with Riesz space fractional derivatives on a finite domain. Here we considered two types of fractional PDEs with Riesz space fractional derivatives such as Riesz fractional diffusion equation (RFDE) and Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second‐order space derivative with the Riesz fractional derivative of order α∈(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first‐order and second‐order space derivatives with the Riesz fractional derivatives of order β∈(0,1] and of order α∈(1,2] respectively. Here the analytic solutions of both the RFDE and RFADE are derived by using modified homotopy analysis method with Fourier transform. Then, we analyze the results by numerical simulations, which demonstrate the simplicity and effectiveness of the present method. Here the space fractional derivatives are defined as Riesz fractional derivatives. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号