首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, the generalized Rosenau–KdV equation is split into two subequations such that one is linear and the other is nonlinear. The resulting subequations with the prescribed initial and boundary conditions are numerically solved by the first order Lie–Trotter and the second‐order Strang time‐splitting techniques combined with the quintic B‐spline collocation by the help of the fourth order Runge–Kutta (RK‐4) method. To show the accuracy and reliability of the proposed techniques, two test problems having exact solutions are considered. The computed error norms L2 and L with the conservative properties of the discrete mass Q(t) and energy E(t) are compared with those available in the literature. The convergence orders of both techniques have also been calculated. Moreover, the stability analyses of the numerical schemes are investigated.  相似文献   

2.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

3.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Recently Caputo and Fabrizio introduced a new derivative with fractional order without singular kernel. The derivative can be used to describe the material heterogeneities and the fluctuations of different scales. In this article, we derived a new discretization of Caputo–Fabrizio derivative of order α (1 < α < 2) and applied it into the Cattaneo equation. A fully discrete scheme based on finite difference method in time and Legendre spectral approximation in space is proposed. The stability and convergence of the fully discrete scheme are rigorously established. The convergence rate of the fully discrete scheme in H1 norm is O(τ2 + N1?m), where τ, N and m are the time‐step size, polynomial degree and regularity in the space variable of the exact solution, respectively. Furthermore, the accuracy and applicability of the scheme are confirmed by numerical examples to support the theoretical results.  相似文献   

5.
In this paper, we compared two different methods, one numerical technique, viz Legendre multiwavelet method, and the other analytical technique, viz optimal homotopy asymptotic method (OHAM), for solving fractional‐order Kaup–Kupershmidt (KK) equation. Two‐dimensional Legendre multiwavelet expansion together with operational matrices of fractional integration and derivative of wavelet functions is used to compute the numerical solution of nonlinear time‐fractional KK equation. The approximate solutions of time fractional Kaup–Kupershmidt equation thus obtained by Legendre multiwavelet method are compared with the exact solutions as well as with OHAM. The present numerical scheme is quite simple, effective, and expedient for obtaining numerical solution of fractional KK equation in comparison to analytical approach of OHAM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In the present study, the operator splitting techniques based on the quintic B‐spline collocation finite element method are presented for calculating the numerical solutions of the Rosenau–KdV–RLW equation. Two test problems having exact solutions have been considered. To demonstrate the efficiency and accuracy of the present methods, the error norms L2 and L with the discrete mass Q and energy E conservative properties have been calculated. The results obtained by the method have been compared with the exact solution of each problem and other numerical results in the literature, and also found to be in good agreement with each other. A Fourier stability analysis of each presented method is also investigated.  相似文献   

7.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
L‐error estimates for B‐spline Galerkin finite element solution of the Rosenau–Burgers equation are considered. The semidiscrete B‐spline Galerkin scheme is studied using appropriate projections. For fully discrete B‐spline Galerkin scheme, we consider the Crank–Nicolson method and analyze the corresponding error estimates in time. Numerical experiments are given to demonstrate validity and order of accuracy of the proposed method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 877–895, 2016  相似文献   

9.
We will propose a unified algebraic method to construct Jacobi elliptic function solutions to differential–difference equations (DDEs). The solutions to DDEs in terms of Jacobi elliptic functions sn, cn and dn have a unified form and can be presented through solving the associated algebraic equations. To illustrate the effectiveness of this method, we apply the algorithm to some physically significant DDEs, including the discrete hybrid equation, semi‐discrete coupled modified Korteweg–de Vries and the discrete Klein–Gordon equation, thereby generating some new exact travelling periodic solutions to the discrete Klein–Gordon equation. A procedure is also given to determine the polynomial expansion order of Jacobi elliptic function solutions to DDEs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A Legendre–Gauss–Lobatto spectral collocation method is introduced for the numerical solutions of a class of nonlinear delay differential equations. An efficient algorithm is designed for the single‐step scheme and applied to the multiple‐domain case. As a theoretical result, we obtain a general convergence theorem for the single‐step case. Numerical results show that the suggested algorithm enjoys high‐order accuracy both in time and in the delayed argument and can be implemented in a robust and efficient manner. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

12.
We propose a decoupled and linearized fully discrete finite element method (FEM) for the time‐dependent Ginzburg–Landau equations under the temporal gauge, where a Crank–Nicolson scheme is used for the time discretization. By carefully designing the time‐discretization scheme, we manage to prove the convergence rate , where τ is the time‐step size and r is the degree of the finite element space. Due to the degeneracy of the problem, the convergence rate in the spatial direction is one order lower than the optimal convergence rate of FEMs for parabolic equations. Numerical tests are provided to support our error analysis. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1279–1290, 2014  相似文献   

13.
In this paper, a high‐order accurate numerical method for two‐dimensional semilinear parabolic equations is presented. We apply a Galerkin–Legendre spectral method for discretizing spatial derivatives and a spectral collocation method for the time integration of the resulting nonlinear system of ordinary differential equations. Our formulation can be made arbitrarily high‐order accurate in both space and time. Optimal a priori error bound is derived in the L2‐norm for the semidiscrete formulation. Extensive numerical results are presented to demonstrate the convergence property of the method, show our formulation have spectrally accurate in both space and time. John Wiley & Sons, Ltd.  相似文献   

14.
A linearized Crank–Nicolson‐type scheme is proposed for the two‐dimensional complex Ginzburg–Landau equation. The scheme is proved to be unconditionally convergent in the L2 ‐norm by the discrete energy method. The convergence order is \begin{align*}\mathcal{O}(\tau^2+h_1^2+h^2_2)\end{align*}, where τ is the temporal grid size and h1,h2 are spatial grid sizes in the x ‐ and y ‐directions, respectively. A numerical example is presented to support the theoretical result. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Numerical solutions of the Benjamin‐Bona‐Mahony‐Burgers equation in one space dimension are considered using Crank‐Nicolson‐type finite difference method. Existence of solutions is shown by using the Brower's fixed point theorem. The stability and uniqueness of the corresponding methods are proved by the means of the discrete energy method. The convergence in L‐norm of the difference solution is obtained. A conservative difference scheme is presented for the Benjamin‐Bona‐Mahony equation. Some numerical experiments have been conducted in order to validate the theoretical results.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

17.
In this paper, the Darboux transformation of the Kundu–nonlinear Schrödinger equation is derived and generalized to the matrix of n‐fold Darboux transformation. From known solution Q, the determinant representation of n‐th new solutions of Q[n] are obtained by the n‐fold Darboux transformation. Then soliton solutions and positon solutions are generated from trivial seed solutions, breather solutions and rogue wave solutions that are obtained from periodic seed solutions. After that, the higher order rogue wave solutions of the Kundu–nonlinear Schrödinger equation are given. We show that free parameters in eigenfunctions can adjust the patterns of the higher order rogue waves. Meanwhile, the third‐order rogue waves are given explicitly. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Calgero–Bogoyavlenskii–Schiff (CBS) equation is analytically solved through two successive reductions into an ordinary differential equation (ODE) through a set of optimal Lie vectors. During the second reduction step, CBS equation is reduced using hidden vectors. The resulting ODE is then analytically solved through the singular manifold method in three steps; First, a Bäcklund truncated series is obtained. Second, this series is inserted into the ODE, and finally, a seminal analysis leads to a Schwarzian differential equation in the eigenfunction φ(η). Solving this differential equation leads to new analytical solutions. Then, through two backward substitution steps, the original dependent variable is recovered. The obtained results are plotted for several Lie hidden vectors and compared with previous work on CBS equation using Lie transformations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we investigate the classical Drinfel’d–Sokolov–Wilson equation (DSWE)
where p, q, r, s are some nonzero parameters. Some explicit expressions of solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain solitary wave solutions, blow-up solutions, periodic solutions, periodic blow-up solutions and kink-shaped solutions. Some previous results are extended.  相似文献   

20.
The evolution equation is considered. A discrete parabolic methodology is developed, based on a discrete elliptic (fourth‐order) calculus. The main ingredient of this calculus is a discrete biharmonic operator (DBO). In the general case, it is shown that the approximate solutions converge to the continuous one. An “almost optimal” convergence result (O(h4 ? ?)) is established in the case of constant coefficients, in particular in the pure biharmonic case. Several numerical test cases are presented that not only corroborate the theoretical accuracy result, but also demonstrate high‐order accuracy of the method in nonlinear cases. The nonlinear equations include the well‐studied Kuramoto–Sivashinsky equation. Numerical solutions for this equation are shown to approximate remarkably well the exact solutions. The numerical examples demonstrate the great improvement achieved by using the DBO instead of the standard (five‐point) discrete bilaplacian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号