首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct comparison of plate–plate magnetorheometry results for nonmagnetic (titanium/brass) and ferromagnetic plates is presented, using a modified Anton Paar magnetocell MRD180/1T. Necessary corrections to derive the true flux density in the magnetorheological fluid (MRF) from the online Hall probe reading and to account for the gap opening effect caused by normal forces on shear stress and flux density are addressed. The measured shear stress versus magnetic flux density characteristics agree in the low flux density regime <0.1 T but yield distinctly higher transmittable shear stresses for ferromagnetic plates at elevated flux densities (49% increase at 1 T for 90% by weight carbonyl iron powder (CIP) and 84% for 85% by weight CIP). Remarkably, the normal force, if corrected for its magnetostatic part, remains independent of the type of plates up to about 0.6 T. We address the role of normal forces, of magnetic interactions between CIP and wall, as well as the role of wall roughness in a solid body friction model. A systematic variation of wall properties and materials was achieved by introducing both a modular rotor and stator, which ease the variation of the walls in contact to the MRF. The transmittable shear stress of nonmagnetic plates (e.g., brass) may be increased up to the level of ferromagnetic disks by a higher wall roughness or by grooves. No shear stress increase is obtained for grooves in ferromagnetic plates, which is explained by the different local flux density modulation at the grooves for ferromagnetic compared to nonmagnetic plates. Finally, we address the effect of ferromagnetic and nonmagnetic coatings on brass and steel disks, and show that, e.g., a layer of CIP on brass efficiently increases the transmittable shear stress.  相似文献   

2.
The present paper reports the parametric studies and correlations for the problem of combined conduction-mixed convection–radiation from a non-identically and discretely heated vertical plate. Three discrete heat sources of non-identical heights but with identical volumetric rate of heat generation are assumed to be flush-mounted in a thin vertical plate. The longest and the shortest heaters are provided at the leading and trailing edges of the plate, while the remaining heater is located centrally. The governing fluid flow and heat transfer equations are considered in their full strength without the boundary layer approximations and are solved using the finite volume method. A computer code is written to solve the problem and various parametric studies have been performed. The relative roles of free convection, forced convection and radiation in various fluid flow and heat transfer results have been elucidated. In conclusion, based on a large set of data generated from the code, correlations for maximum non-dimensional plate temperature, average non-dimensional plate temperature and mean friction coefficient have been evolved.  相似文献   

3.
This paper is the companion to Part I under the same title, and is mainly concerned with wave loads due to nonlinear waves of solitary and cnoidal type propagating over a submerged, horizontal and thin plate. Following the development of the nonlinear model (via the Level I Green–Naghdi theory) for the flow of an incompressible and inviscid fluid given in Part I, the wave-induced loads on the submerged, fixed (and rigid) plate are calculated, and results are compared with the available laboratory data, and with linear solutions of the problem. Dependence of the loads on wave conditions (wave height and wavelength) and plate characteristics (submergence depth and plate width) are studied for both the solitary and cnoidal wave cases.  相似文献   

4.
The apparent shear stress from plate–plate magnetorheometry, using the commercial magnetocell MRD180/1T (Physica/Anton Paar) in standard configuration, is distinctly overestimated. The effect is due to a flux density maximum near the sample rim and radial migration of iron particles towards the rim. Radial magnetic flux density profiles were investigated by finite element simulations using the Maxwell®2D code and by direct Hall probe measurements. The reliability of the finite element method results, both for the empty magnetocell and with magnetorheological fluid (MRF) in the measuring gap, allows conclusions on the true flux density within the MRF, which cannot be accessed by Hall probe measurements. If the MRF sits on top of the bottom yoke (standard configuration), the flux density maximum reaches twice the plateau value (0.74 T for 3 A coil current and 0.3 mm gap height of the investigated MRF). This yields a higher effective flux density and causes radial iron particle migration, resulting in an additional magnetic flux increase near the rim due to augmented MRF magnetisation. As a result, the rotor torque at constant rotary speed increases with time. Reliable results are achieved by a modification of the magnetocell, such that the MRF sits on a non-magnetic Hall disc of 1.5 mm thickness, allowing an online flux density measurement by a FW Bell Hall probe. In this configuration, the radial flux density profile near the rim remains sufficiently flat and no iron particle migration is detected.  相似文献   

5.
Resonant chaotic motions of a simply supported rectangular thin plate with parametrically and externally excitations are analyzed using exponential dichotomies and an averaging procedure for the first time. The formulas of the rectangular thin plate are derived by a von Karman type equation and the Galerkin’s approach. The critical condition to predict the onset of chaotic motions for the full system is obtained by developing a Melnikov function containing terms from the non-hyperbolic mode. We prove that the non-hyperbolic mode of the thin plate does not affect the critical condition for the occurrence of chaotic motions in the resonant case. Simulations also show that the chaotic motions of the hyperbolic subsystem are shadowed by the chaotic motions for the full system of the rectangular thin plate.  相似文献   

6.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

7.
A complexpotential solution of a mixed problem of the linear theory of elasticity is given for an infinite plate composed of two anisotropic halfplanes. The plate contains cuts and thin undeformable inclusions shaped like arbitrary open smooth curves that do not intersect each other and the interface between the halfplanes.  相似文献   

8.
Transverse vibration characteristics of axially moving viscoelastic plate   总被引:4,自引:0,他引:4  
The dynamic characteristics and stability of axially moving viscoelastic rect- angular thin plate are investigated.Based on the two dimensional viscoelastic differential constitutive relation,the differential equations of motion of the axially moving viscoelastic plate are established.Dimensionless complex frequencies of an axially moving viscoelastic plate with four edges simply supported,two opposite edges simply supported and other two edges clamped are calculated by the differential quadrature method.The effects of the aspect ratio,moving speed and dimensionless delay time of the material on the trans- verse vibration and stability of the axially moving viscoelastic plate are analyzed.  相似文献   

9.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

10.
Tuna  Meral  Leonetti  Lorenzo  Trovalusci  Patrizia  Kirca  Mesut 《Meccanica》2020,55(4):927-944
Meccanica - Increasing application of composite structures in engineering field inherently speed up the studies focusing on the investigation of non-homogeneous bodies. Due to their capability on...  相似文献   

11.
We revisit a problem originally considered by Stewartson in 1961: the incompressible, high-Reynolds-number flow past a quarter-infinite plate, with a leading edge that is perpendicular to, and a side edge that is parallel to, an undisturbed oncoming freestream. Particular emphasis is placed on the key region close to the side edge, where the flow is (superficially) three-dimensional, although the use of similarity variables reduces the dimensionality of the problem down to two. As noted by Stewartson, this problem has several intriguing features; it includes singularities and is also of a mixed parabolic type, with edge conditions influencing the solution in both directions across the flow domain. These features serve to greatly complicate the (numerical) solution process (the problem is of course also highly non-linear), and computation was clearly infeasible in 1961. In the present paper, a detailed computational study is presented, answering many of the questions that arose from the 1961 study. We present detailed numerical results together with asymptotic analyses of the key locations in the flow.  相似文献   

12.
In this paper,the nonlinear dynamic responses of a piezoelectric cantilever plate near the first-order and second-order natural frequencies under the action of electromechanical coupling are studied by experiments and finite element(FE)methods.The influence of different excitation frequencies on the dynamical characteristics of piezoelectric cantilever plates is analyzed with the fixed excitation amplitude.First,an experimental setup is built,including a carbon fiber cantilever plate attached to a macro fiber composite(MFC)sheet.Then,the electromechanical coupling excitations are subjected to the plate with different frequencies,which are chosen near the first and second-order natural frequencies of the plate.The piezoelectric cantilever plate has periodical motions under a lower frequency excitation,and the motions of the plate become more complex after another high frequency excitation added in the physical field.The experimental results show that the motion of the piezoelectric cantilever plate changes from stable to unstable with high-low coupled resonant frequencies.At last,the FE study is carried out to compare and verify the experimental results and the effects of isotropic and orthotropic materials on the accuracy of natural frequencies results are also compared.  相似文献   

13.
14.
A mathematical model is presented for analyzing the boundary layer forced convective flow and heat transfer of an incompressible fluid past a plate embedded in a Darcy-Forchheimer porous medium. Thermal radiation term is considered in the energy equation. The similarity solutions for the problem are obtained and the reduced nonlinear ordinary differential equations are solved numerically. It is noticed that the boundary layer decreases with an increase in the value of inertial parameter and in this case the temperature profile is found to decrease smoothly within the boundary layer. In case of porous plate, fluid velocity increases whereas non-dimensional temperature decreases for increasing values of suction parameter. The rate of heat transfer increases with the increasing values of Prandtl number. The effect of thermal radiation on temperature field is also analyzed.  相似文献   

15.
This paper presents results of experimental and numerical analyses of in-plane waves propagating in a 5 mm-thick steel plate in the frequency range of 120–300 kHz. For such a thickness/frequency ratio, extensional waves reveal dispersive character. To model in-plane wave propagation taking into account the thickness-stretch effect, a novel 2D spectral element, based on the Kane–Mindlin theory, was formulated. An application of in-plane waves to damage detection is also discussed. Experimental investigations employing a laser vibrometer demonstrated that the position and length of a defect can precisely be identified by analysing reflected and diffracted waves.  相似文献   

16.
This study deals with the numerical predictions through Large-Eddy Simulation (LES) of the separated–reattached turbulent flow over a blunt flat plate for analyzing main coherent structure features and their relation to the unsteady pressure field. A compressible approach that inherently includes acoustic propagation is here followed to describe the relationship between pressure fluctuations and vortex dynamics around the separation bubble. The objective of the present work is then to contribute to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations. The filtered compressible Navier–Stokes equations are then solved with a numerical method that follows a Lax–Wendroff approach to recover a high accuracy in both time and space. For validations, the present numerical results are compared to experimental measurements, coming from both the Pprime laboratory (Sicot el al., 2012) and the literature (Cherry et al., 1984; Kiya and Sasaki, 1985; Tafti and Vanka,1991; Sicot et al., 2012). Our numerical results very well predict mean and fluctuating pressure and velocity fields. Flapping, shedding as well as Kelvin–Helmholtz characteristic frequencies educed by present simulations are in very good agreement with the experimental values generally admitted. These characteristic modes are also visible on unsteady pressure signatures even far away from the separation. Spectral, POD and EPOD (extended POD) analyses are then applied to these numerical data to enhance the salient features of the pressure and velocity fields, especially the unsteady wall pressure in connection with either the vortex shedding or the low frequency shear-layer flapping. A contribution to the understanding of the coupling between wall pressure fluctuations and eddy vortices is finally proposed.  相似文献   

17.
The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied.First,the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier ex- panding with respect to azimuth,and the state equation is established by Hankel integral transform method,furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation.Secondly,by the transfer matrixes,the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of.ground as well as the contact conditions.Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundary- value problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily.At the end of this paper,a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.  相似文献   

18.
The interaction between a normally impinging shock wave and the boundary layer on a plate with slip is studied in the neighborhood of the leading edge using various experimental methods, including special laser technology, to visualize the supersonic conical gas flows. It is found that in the “non-free” interaction, when the leading edge impedes the propagation of the boundary layer separation line upstream, the structure of the disturbed flow is largely identical to that in the developed “free” interaction, but with higher parameter values and gradients in the leading part of the separation zone. The fundamental property of developed separation flows, namely, coincidence of the values of the pressure “plateau” in the separation zone and the pressure behind the oblique shock above the separation zone of the turbulent boundary layer, is conserved. Moscow. e-mail: ostap@inmech.msu.su. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 57–69, May–June, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 97-01-00099).  相似文献   

19.
In this paper, the aeroelastic analyses of a rectangular cantilever plate of varying aspect ratio is presented. The classical plate theory has been selected as the structural model. The main point that distinguishes this study from previously reported research is employing Peters’ theory to model aerodynamic effect which is not straightforward. The Peters’ aerodynamic model was originally developed to provide lift and moment, which is only applicable to the structural model based on the beam theories. In this study, using the basic concept of the Peters’ aerodynamic model in addition to utilizing the Fourier series, the pressure distribution is derived, which makes Peters’ model applicable to structural models based on plate theory. This combination provides a much simpler state–space aeroelastic model for plates in comparison to the prevalent panel methods, which could lead to a significant reduction in computational time. In addition, the aeroelastic response of the plate with respect to changes in the structural model from the beam theory to the plate theory is evaluated. By using data from an experiment carried out at Duke University, the theoretical results are evaluated. Furthermore, the differences in structural models obtained from the plate and beam theories can be divided into two distinct parts, which are responsible for differences in bending and torsional behaviors of the structure, separately. This approach enables us to measure the effects of differences of each behavior separately, which could provide with a new insight into the problem. It has been determined that the flutter speeds obtained from the beam and plate aeroelastic models are little affected by the difference in bending behavior, but rather is mainly caused by the difference in torsional frequencies.  相似文献   

20.
This paper presents a study of the effect of a magnetic field and variable viscosity on steady twodimensional laminar nonDarcy forced convection flow over a flat plate with variable wall temperature in a porous medium in the presence of blowing (suction). The fluid viscosity is assumed to vary as an inverse linear function of temperature. The derived fundamental equations on the assumption of small magnetic Reynolds number are solved numerically by using the finite difference method. The effects of variable viscosity, magnetic and suction (or injection) parameters on the velocity and temperature profiles as well as on the skinfriction and heattransfer coefficients were studied. It is shown that the magnetic field increases the wall skin friction while the heattransfer rate decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号