首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we characterize the chaotic properties of atomic fluids subjected to planar mixed flow, which is a linear combination of planar shear and elongational flows, in a constant temperature thermodynamic ensemble. With the use of a recently developed nonequilibrium molecular dynamics algorithm, compatible and reproducible periodic boundary conditions are realized so that Lyapunov spectra analysis can be carried out for the first time. Previous studies on planar shear and elongational flows have shown that Lyapunov spectra organize in different ways, depending on the character of the defining equations of the system. Interestingly, planar mixed flow gives rise to chaotic spectra that, on one hand, contain elements common to those of shear and elongational flows but also show peculiar, unique traits. In particular, the influence of the constituent flows in regards to the conjugate-pairing rule (CPR) is analyzed. CPR is observed in homogeneously thermostated systems whose adiabatic (or unthermostated) equations of motion are symplectic. We show that the component associated with the shear tends to selectively excite some of those degrees, and is responsible for violations in the rule.  相似文献   

2.
We present nonequilibrium molecular dynamics simulations of planar elongational flow (PEF) by an algorithm proposed by Tuckerman et al. [J. Chem. Phys. 106, 5615 (1997)] and theoretically elaborated by Edwards and Dressler [J. Non-Newtonian, Fluid Mech. 96, 163 (2001)], which we shall call the proper-SLLOD algorithm, or p-SLLOD for short. [For background on names of algorithms see W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W. T. Ashurst, and B. Moran, Phys. Rev. A 22, 1690 (1980) and D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984).] We show that there are two sources for the exponential growth in PEF of the total linear momentum of the system in the contracting direction, which has been previously observed using the so-called SLLOD algorithm. The first comes from the SLLOD algorithm itself, and the second from the implementation of the Kraynik and Reinelt [Int. J. Multiphase Flow 18, 1045 (1992)] boundary conditions. Using the p-SLLOD algorithm (to eliminate the first source) implemented with our simulation strategy (to eliminate the second) in PEF simulations, we no longer observe the exponential growth. By analyzing the equations of motion, we also demonstrate that both the SLLOD and the DOLLS algorithms are intrinsically unsuitable for representing a nonequilibrium system with elongational flow. However, the p-SLLOD algorithm has a rigorously canonical structure in laboratory phase space, and thus can represent a nonequilibrium system not only for elongational flow but also for a general flow.  相似文献   

3.
The authors used the bead‐and‐spring model and the Brownian dynamics simulation technique including hydrodynamic interaction to study the behavior of dilute polyelectrolyte solutions under elongational flow. First they carried out simulations to determine the longest relaxation time of a polyelectrolyte, finding that the relaxation time depends on the ionic strength of the solution. Then, they studied the coil‐stretch transition of polyelectrolyte molecules in elongational flow and determined the critical value of the elongational rate necessary in order this transition to occur. In this way, they could compute the value of the Deborah number at which coil‐stretch transition sets in for polyelectrolyte dilute solutions. Finally, they studied the power law relationship that relates the critical elongational rate with the molecular weight of the polyelectrolyte. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 714–722, 2007  相似文献   

4.
本文采用多棒刚杆分子模型,用Galerkin法计算了聚合物稀溶液在定常剪切流、平面拉伸流、单轴拉伸流、单轴拉伸与剪切流相组合的复杂流动的流变学性质。计算结果表明,多棒刚杆分子模型有希望成为描述聚合物稀溶液流变性质的较为完善的分子模型。本文的研究不仅可使人们用分子模型来代替连续介质本构方程进行粘弹性流体复杂流动的数值模拟,而且也为探讨描述聚合物浓溶液的分子模型提供了一种新的途径。  相似文献   

5.
Molecular dynamics simulations of liquid systems under planar elongational flow have mainly been performed in the NVT ensemble. However, in most material processing techniques and common experimental settings, at least one surface of the fluid is kept in contact with the atmosphere, thus maintaining the sample in the NpT ensemble. For this reason, an implementation of the Nose-Hoover integral-feedback mechanism for constant pressure is presented, implemented via the SLLOD algorithm for elongational flow. The authors test their procedure for an atomic liquid and compare the viscosity obtained with that in the NVT ensemble. The scheme is easy to implement, self-starting and reliable, and can be a useful tool for the simulation of more complex liquid systems, such as polymer melts and solutions.  相似文献   

6.
Taking the molecular ionic liquid 1-ethyl-3-methylimidazolium triflate as a reference system, the size and time dependence of molecular dynamics simulation studies is analyzed in a systematic way. Based on an all atom force field, trajectories of 70 ns length, covering samples of 8-2000 ion pairs, were generated and analyzed in terms of structure as well as single particle and collective dynamics. Although 50 ion pairs seemed sufficient for structure, at least 500 ion pairs were needed for the correct handling of dynamics. For larger systems a linear regime is found, i.e., the respective dynamical properties are a linear function of the inverse box length. In case of translational diffusion coefficients, this linear relation can be rationalised in hydrodynamic terms. The respective formula is essentially determined by viscosity and the inverse box length. Concerning the time dependence, consistent dynamical properties required a time period of 20-30 ns. Nevertheless, size dependence dominates time dependence and has to be primarily addressed.  相似文献   

7.
We present various rheological and structural properties of three polyethylene liquids, C50H102, C78H158, and C128H258, using nonequilibrium molecular dynamics simulations of planar elongational flow. All three melts display tension-thinning behavior of both elongational viscosities, eta1 and eta2. This tension thinning appears to follow the power law with respect to the elongation rate, i.e., eta approximately epsilon(b), where the exponent b is shown to be approximately -0.4 for eta1 and eta2. More specifically, b of eta1 is shown to be slightly larger than that of eta2 and to increase in magnitude with the chain length, while b of eta2 appeared to be independent of the chain length. We also investigated separately the contribution of each mode to the two elongational viscosities. For all three liquids, the intermolecular Lennard-Jones (LJ), intramolecular LJ, and bond-stretching modes make positive contributions to both eta1 and eta2, while the bond-torsional and bond-bending modes make negative contributions to both eta1 and eta2. The contribution of each of the five modes decreases in magnitude with increasing elongation rate. The hydrostatic pressure shows a clear minimum at a certain elongation rate for each liquid, and the elongation rate at which the minimum occurs appears to increase with the chain length. The behavior of the hydrostatic pressure with respect to the elongation rate is shown to correlate with the intermolecular LJ energy from a microscopic viewpoint. On the other hand, R(ete)2 and R(g)2 appear to be correlated with the intramolecular LJ energy. The study of the effect of the elongational field on the conformation tensor c shows that the degree of increase of tr(c)-3 with the elongation rate becomes stronger as the chain length increases. Also, the well-known linear reaction between sigma and c does not seem to be satisfactory. It seems that a simple relation between sigma and c would not be valid, in general, for arbitrary flows.  相似文献   

8.
The relaxation time of a polymer chain in an elongational flow field was investigated for hydroxypropylcellulose (HPC) semidilute solution systems by two methods: phenomenological analysis of elongational flow-induced birefringence, and dynamic light scattering (DLS) and rheological measurements. To understand the relaxation time of an entangled semiflexible polymer solution in an elongational flow field, scaling analysis of the elongational flow-induced birefringence curve was performed. The results of both temperature and concentration scaling analyses showed that birefringence curves at different temperatures and at several HPC concentrations were described well by a universal birefringence–strain rate curve. This scaling behavior was compared with the "fuzzy cylinder" model. The critical strain rate corresponded to the correlation time of the slow relaxation mode determined by DLS measurement and the relaxation spectrum obtained by dynamic viscoelasticity measurement. The elongational flow-induced birefringence observed in an HPC semidilute solution was concluded to be attributed to the orientation of the HPC segment in the entangled molecular system, because the dominant relaxation mode is found to be the concentration fluctuation of an entangled molecular cluster in a quiescent state.  相似文献   

9.
Phase behavior of hydroxypropylcellulose (HPC) in a mixed solvent of glycerol and water was investigated by two different rheological methods: rheooptical birefringence measurement in an elongational flow field and viscometric measurement in a shear flow field. The association process of the HPC chain during phase separation observed by the elongational flow birefringence method was also investigated by the shear viscometric method. The temperature dependence of chain rigidity was determined by measuring the intrinsic viscosity, and change in the conformation was investigated by observing elongational flow birefringence over the temperature range from the one‐phase to inside a phase boundary. The results focus on the molecular process of phase separation. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1976–1986, 2001  相似文献   

10.
A nonequilibrium molecular dynamics simulation of the response of dimyristoylphosphatidylcholine (DMPC) bilayers to a solvent shear flow is presented. Application of shear flow to planar, stationary DMPC bilayers results in a redistribution of the membrane density profile along the bilayer normal due to the alignment of the lipids in the direction of flow and an increase in average lipid chain length. An increase in the intermolecular and intramolecular order of the lipids in response to the shear flow is also observed. This study provides groundwork for understanding the mechanism of the full response of lipid bilayers to externally imposed solvent shear flows, beginning with the response in the absence of collective lipid motions such as undulations and bilayer flow.  相似文献   

11.
The behaviour of polymer molecules in solution flowing through a succession of contraction‐expansion zones was simulated using the Brownian dynamics method. The velocity profile of the flow field calculated previously, assuming that the flow modification in dilute polymer solution is negligible, was used. In the vicinity of the cell symmetry axis the flow can be described as an oscillatory elongational planar flow. The dumbbell with conformation‐dependent friction and elastic coefficients was chosen as a model for the polymer chain. When the initial state of the polymer chain entering the first contraction zone had corresponded to a gaussian coil the initial increase in the polymer deformation along the flow direction was observed. After some time independent of the flow rate, the amplitude of deformation gradually decreased to the stationary value further in the cell where the polymer deformation followed the flow oscillations. The amplitude of the deformation oscillations showed the critical behaviour: they increased for flow rates less than a critical value and did not change with further increase in the flow rate.  相似文献   

12.
In molecular simulations with periodic boundary conditions the computational box may have five different shapes: triclinic; the hexagonal prism; two types of dodecahedrons; and the truncated octahedron. In this article, we show that every molecular simulation, formulated in one of these boxes, can be transformed into a simulation in one of the other ones. The transformation can be done in a preprocessing phase. The simulation in the new box is exactly identical to the simulation in the original one. This means that every molecular simulation may be done in the same type of box. Because the triclinic box is the easiest one to implement, we pay special attention to how to transform the other four box types into triclinic boxes. As a consequence, simulations in the often used truncated octahedron are superfluous; they may be done in a much simpler way in a triclinic box. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1930–1942, 1997  相似文献   

13.
Using nonequilibrium molecular dynamics simulations, we study the non-Newtonian rheology of a microscopic sample of simple fluid. The calculations were performed using a configurational thermostat which unlike previous nonequilibrium molecular dynamics or nonequilibrium Brownian dynamics methods does not exert any additional constraint on the flow profile. Our findings are in agreement with experimental results on concentrated "hard sphere"-like colloidal suspensions. We observe: (i) a shear thickening regime under steady shear; (ii) a strain thickening regime under oscillatory shear at low frequencies; and (iii) shear-induced ordering under oscillatory shear at higher frequencies. These results significantly differ from previous simulation results which showed systematically a strong ordering for all frequencies. They also indicate that shear thickening can occur even in the absence of a solvent.  相似文献   

14.
We apply an operator splitting method to develop a simulation algorithm that has complete analytical solutions for the Gaussian thermostated SLLOD equations of motion [D. J. Evans and G. P. Morriss, Phys. Rev. A 30, 1528 (1984)] for a system under shear. This leads to a homogeneous algorithm for performing both equilibrium and nonequilibrium isokinetic molecular dynamics simulation. The resulting algorithm is computationally efficient. In particular, larger integration time steps can be used compared to simulations with regular Gaussian thermostated SLLOD equations of motion. The utility and accuracy of the algorithm are demonstrated through application to the Weeks-Chandler-Anderson fluid. Although strict conservation of the kinetic energy suppresses thermal fluctuations in the system, this algorithm does not allow simulations at lower shear rates than those normally afforded by older nonequilibrium molecular dynamics simulations.  相似文献   

15.
16.
Nonlinear-response theory of nonequilibrium molecular-dynamics simulation algorithms is considered under the imposition of an arbitrary steady-state flow field. It is demonstrated that the SLLOD and DOLLS algorithms cannot be used for general flows, although the SLLOD algorithm is rigorous for planar Couette flow. Following the same procedure used to establish SLLOD as the valid algorithm for planar Couette flow [D. J. Evans and E. P. Morriss, Phys. Rev. A 30, 1528 (1984)], it is demonstrated that the p-SLLOD algorithm is valid for arbitrary flows and produces the correct nonlinear response of the viscous pressure tensor.  相似文献   

17.
We examine the transport of methane in microporous carbon by performing equilibrium and nonequilibrium molecular dynamics simulations over a range of pore sizes, densities, and temperatures. We interpret these simulation results using two models of the transport process. At low densities, we consider a molecular flow model, in which intermolecular interactions are neglected, and find excellent agreement between transport diffusion coefficients determined from simulation, and those predicted by the model. Simulation results indicate that the model can be applied up to fluid densities of the order to 0.1-1 nm(-3). Above these densities, we consider a slip flow model, combining hydrodynamic theory with a slip condition at the solid-fluid interface. As the diffusion coefficient at low densities can be accurately determined by the molecular flow model, we also consider a model where the slip condition is supplied by the molecular flow model. We find that both density-dependent models provide a useful means of estimating the transport coefficient that compares well with simulation.  相似文献   

18.
The transient-time correlation function (TTCF) method is used to calculate the nonlinear response of a homogeneous atomic fluid close to equilibrium. The TTCF response of the pressure tensor subjected to a time-independent planar mixed flow of shear and elongation is compared to directly averaged non-equilibrium molecular dynamics (NEMD) simulations. We discuss the consequence of noise in simulations with a small rate of deformation. The generalized viscosity for planar mixed flow is also calculated with TTCF. We find that for small rates of deformation, TTCF is far more efficient than direct averages of NEMD simulations. Therefore, TTCF can be applied to fluids with deformation rates which are much smaller than those commonly used in NEMD simulations. Ultimately, TTCF applied to molecular systems is amenable to direct comparison between NEMD simulations and experiments and so in principle can be used to study the rheology of polymer melts in industrial processes.  相似文献   

19.
Atomistic simulations are conducted to examine the dependence of the viscosity of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on temperature and water content. A nonequilibrium molecular dynamics procedure is utilized along with an established fixed charge force field. It is found that the simulations quantitatively capture the temperature dependence of the viscosity as well as the drop in viscosity that occurs with increasing water content. Using mixture viscosity models, we show that the relative drop in viscosity with water content is actually less than that that would be predicted for an ideal system. This finding is at odds with the popular notion that small amounts of water cause an unusually large drop in the viscosity of ionic liquids. The simulations suggest that, due to preferential association of water with anions and the formation of water clusters, the excess molar volume is negative. This means that dissolved water is actually less effective at lowering the viscosity of these mixtures when compared to a solute obeying ideal mixing behavior. The use of a nonequilibrium simulation technique enables diffusive behavior to be observed on the time scale of the simulations, and standard equilibrium molecular dynamics resulted in sub-diffusive behavior even over 2 ns of simulation time.  相似文献   

20.
To model the imbibition of liquids into porous solids, use is often made of the Lucas-Washburn equation, which relates the distance of penetration of a liquid at a given time to the pore radius, the viscosity and surface tension of the liquid, and the effective contact angle between the liquid and the solid. In this paper, we extend previous large-scale molecular dynamics simulations to show how this tool can be used to study the details of liquid imbibition, including the impact of the contact angle on the dynamics of penetration and the evolution of the internal flow field. In particular, we show that the asymptotic behavior of the contact angle versus time for a completely wetting liquid is given by approximately t(-1/4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号