首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Classical molecular dynamics simulations of atomistic models of combustion-generated carbon nanoparticles and lipid bilayers have been performed to explore their possible structural, dynamical, and thermodynamic effects on biological membranes. The DREIDING generic force field is used for the carbonaceous nanoparticles of different morphologies, as produced from combustion sources, and the united atom model was employed for the dimyristoylphosphatidylcholine (DMPC) bilayer. It is observed that particle shape and structure have significant effects on solvation, mobility, adsorption, and permeation behavior of the particles. While combustion-generated carbon nanoparticles with an aspect ratio close to unity prefer to stay near the membrane center, precursors with other shapes mostly reside within the hydrocarbon tail region of the membrane. Carbon nanoparticles are not trapped in a local region even inside the membranes but move freely with a speed depending on their molecular weight. The adsorption of the particles on the surface of the biological membrane is comparable to thermal fluctuations because the weak segregation effect by water molecules is the main driving force to the adsorption behavior. The bigger the precursors are, the stronger they are bound to the membrane surface. The presence of combustion-generated nanoparticles inside the membrane perturbs local lipid density by pushing the neighboring lipid molecules away from the nanoparticles. This, coupled with thermal fluctuations, can induce an instantaneous membrane pore to allow water protrusion. From the umbrella sampling method, the potential of mean force for the permeation of carbona nanoparticles into the bilayer was also obtained. Surprisingly, elongated particles have a free energy barrier an order of magnitude smaller compared with more round ones. In addition, the round carbon nanoparticles showed strong hysteresis due to the local trapping of water molecules. Although the carbon soot precursors studied in this work are not the well-known carbon nanoparticles such as fullerenes or carbon nanotubes, the qualitative features of this study may be applicable to them as well.  相似文献   

2.
In this paper, the molecular mechanisms which determine the thermal conductivity of long chain polymer liquids are discussed, based on the results observed in molecular dynamics simulations. Linear n-alkanes, which are typical polymer molecules, were chosen as the target of our studies. Non-equilibrium molecular dynamics simulations of bulk liquid n-alkanes under a constant temperature gradient were performed. Saturated liquids of n-alkanes with six different chain lengths were examined at the same reduced temperature (0.7T(c)), and the contributions of inter- and intramolecular energy transfer to heat conduction flux, which were identified as components of heat flux by the authors' previous study [J. Chem. Phys. 128, 044504 (2008)], were observed. The present study compared n-alkane liquids with various molecular lengths at the same reduced temperature and corresponding saturated densities, and found that the contribution of intramolecular energy transfer to the total heat flux, relative to that of intermolecular energy transfer, increased with the molecular length. The study revealed that in long chain polymer liquids, thermal energy is mainly transferred in the space along the stiff intramolecular bonds. This finding implies a connection between anisotropic thermal conductivity and the orientation of molecules in various organized structures with long polymer molecules aligned in a certain direction, which includes confined polymer liquids and self-organized structures such as membranes of amphiphilic molecules in water.  相似文献   

3.
Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (~7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from "pulling" coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives.  相似文献   

4.
We have carried out atomistic molecular dynamics simulations of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer and an alkane melt. Simulations reveal that the preferred position of a single C60 fullerene is about 6-7 A off of the center plane, allowing the fullerene to take advantage of strong dispersion interactions with denser regions of the bilayer. Further displacement (>8 A) of the fullerene away from the center plane results in a rapid increase in free energy likely due to distortion of the lipid head group layer. The effective interaction between fullerenes (direct interaction plus environment (bilayer)-induced interaction), measured as the potential of mean force (POMF) between two fullerenes as a function of their separation, was found to be significantly less attractive in the lipid bilayer than in an alkane melt of the same molecular weight as the lipid tails. Only part of this difference can be accounted for by the more favorable interaction of the fullerene with the relatively denser bilayer. Additionally, our POMF studies indicate that the bilayer is less able to accommodate the larger aggregated fullerene pair than isolated single fullerenes, again likely due to distortion of the bilayer structure. The implications of these effects on aggregation of fullerenes within lipid bilayer are considered.  相似文献   

5.
The parallel shear viscosity of a dipalmitoylphosphatidylcholine (DPPC) bilayer system is studied by reverse non‐equilibrium molecular dynamics simulations (RNEMD) with two different united‐atom force fields. The results are related to diffusion coefficients and structural distributions obtained by equilibrium molecular simulations. We investigate technical issues of the algorithm in the bilayer setup, namely, the dependence of the velocity profiles on the imposed flux and the influence of the thermostat on the calculated shear viscosity. We introduce the concept of local shear viscosity and investigate its dependence on the slip velocity of the monolayers and the particle density at the headgroup–water interface and the tail–tail interface. With this we demonstrate that the lipid bilayer is more viscous than the surrounding water phase, and that slip takes place near the headgroup region and in the centre of the bilayer where the alkyl tails meet. We also quantify the apparent increase in viscosity of the water molecules entangled at the water–headgroup interface.  相似文献   

6.
We propose a microchannel device that employs a surface-supported self-spreading lipid bilayer membrane as a molecule carrying medium. The device has a micropattern structure fabricated on a SiO2 surface by photolithography, into which a self-spreading lipid bilayer membrane is introduced as the carrier medium. This system corresponds to a microchannel with a single lipid bilayer membrane height of approximately 5 nm, compared with conventional micro-fluidic channels that have a section height and width of at least several microm. The device is beneficial for detecting intermolecular interactions when molecules carried by the self-spreading lipid bilayer collide with each other in the microchannel. The validity of the device was confirmed by observing the fluorescence resonance energy transfer (FRET) between two dye molecules, coumarin and fluorescein.  相似文献   

7.
Herein, we study the permeation free energy of bare and octane‐thiol‐capped gold nanoparticles (AuNPs) translocating through a lipid membrane. To investigate this, we have pulled the bare and capped AuNPs from bulk water to the membrane interior and estimated the free energy cost. The adsorption of the bare AuNP on the bilayer surface is energetically favorable but further loading inside it requires energy. However, the estimated free‐energy barrier for loading the capped AuNP into the lipid membrane is much higher compared to bare AuNP. We also demonstrate the details of the permeation process of bare and capped AuNPs. Bare AuNP induces the curvature in the lipid membrane whereas capped AuNP creates an opening in the interacting monolayer and get inserted into the membrane. The insertion of capped AuNP induces a partial unzipping of the lipid bilayer, which results in the ordering of the local lipids interacting with the nanoparticle. However, bare AuNP disrupts the lipid membrane by pushing the lipid molecules inside the membrane. We also analyze pore formation due to the insertion of capped AuNP into the membrane, which results in water molecules penetrating the hydrophobic region.  相似文献   

8.
It is believed that natural biological membranes contain domains of lipid ordered phase enriched in cholesterol and sphingomyelin. Although the existence of these domains, called lipid rafts, is still not firmly established for natural membranes, direct microscopic observations and phase diagrams obtained from the study of three-component mixtures containing saturated phospholipids, unsaturated phospholipids, and cholesterol demonstrate the existence of lipid rafts in synthetic membranes. The presence of the domains or rafts in these membranes is often ascribed to the preferential interactions between cholesterol and saturated phospholipids, for example, between cholesterol and sphingomyelin. In this work, we calculate, using molecular dynamics computer simulation technique, the free energy of cholesterol transfer from the bilayer containing unsaturated phosphatidylcholine lipid molecules to the bilayer containing sphingomyelin molecules and find that the affinity of cholesterol to sphingomyelin is higher. Our calculations of the free-energy components, energy and entropy, show that cholesterol transfer is exothermic and promoted by the favorable change in the lipid-lipid interactions near cholesterol and not by the favorable energy of cholesterol-sphingomyelin interaction, as assumed previously.  相似文献   

9.
Molecular dynamics simulations are used to investigate the interaction of the sugars trehalose, maltose, and glucose with a phospholipid bilayer at atomic resolution. Simulations of the bilayer in the absence or in the presence of sugar (2 molal concentration for the disaccharides, 4 molal for the monosaccharide) are carried out at 325 and 475 K. At 325 K, the three sugars are found to interact directly with the lipid headgroups through hydrogen bonds, replacing water at about one-fifth to one-quarter of the hydrogen-bonding sites provided by the membrane. Because of its small size and of the reduced topological constraints imposed on the hydroxyl group locations and orientations, glucose interacts more tightly (at identical effective hydroxyl group concentration) with the lipid headgroups when compared to the disaccharides. At high temperature, the three sugars are able to prevent the thermal disruption of the bilayer. This protective effect is correlated with a significant increase in the number of sugar-headgroups hydrogen bonds. For the disaccharides, this change is predominantly due to an increase in the number of sugar molecules bridging three or more lipid molecules. For glucose, it is primarily due to an increase in the number of sugar molecules bound to one or bridging two lipid molecules.  相似文献   

10.
To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.  相似文献   

11.
A bilayer structure is an important immediate for the vesicle formation. However,the mechanism for the bilayer-vesicle transition remains unclear. In this work,a dissipative particle dynamics(DPD) simulation method was employed to study the mechanism of the bilayer-vesicle transition. A coarse-grained model was built based on a lipid molecule termed dimyristoylphosphatidylcholine(DMPC). Simulations were performed from two different initial configurations:a random dispersed solution and a tensionless bilayer. It was found that the bilayer-vesicle transition was driven by the minimization of the water-tail hydrophobic interaction energy,and was accompanied with the increase of the position entropy due to the redistribution of water molecules. The bulk pressure was reduced during the bilayer-vesicle transition,suggesting the evolved vesicle morphology was at the relatively low free energy state. The membrane in the product vesicle was a two-dimensional fluid. It can be concluded that the membrane of a vesicle is not interdigitated and most of the bonds in lipid chains are inclined to orient along the radical axis of the vesicle.  相似文献   

12.
We present results of molecular dynamics simulations of fully hydrated DMPC bilayers performed on graphics processing units (GPUs) using current state-of-the-art non-polarizable force fields and a local GPU-enabled molecular dynamics code named FEN ZI. We treat the conditionally convergent electrostatic interaction energy exactly using the particle mesh Ewald method (PME) for solution of Poisson's Equation for the electrostatic potential under periodic boundary conditions. We discuss elements of our implementation of the PME algorithm on GPUs as well as pertinent performance issues. We proceed to show results of simulations of extended lipid bilayer systems using our program, FEN ZI. We performed simulations of DMPC bilayer systems consisting of 17,004, 68,484, and 273,936 atoms in explicit solvent. We present bilayer structural properties (atomic number densities, electron density profiles), deuterium order parameters (S(CD)), electrostatic properties (dipole potential, water dipole moments), and orientational properties of water. Predicted properties demonstrate excellent agreement with experiment and previous all-atom molecular dynamics simulations. We observe no statistically significant differences in calculated structural or electrostatic properties for different system sizes, suggesting the small bilayer simulations (less than 100 lipid molecules) provide equivalent representation of structural and electrostatic properties associated with significantly larger systems (over 1000 lipid molecules). We stress that the three system size representations will have differences in other properties such as surface capillary wave dynamics or surface tension related effects that are not probed in the current study. The latter properties are inherently dependent on system size. This contribution suggests the suitability of applying emerging GPU technologies to studies of an important class of biological environments, that of lipid bilayers and their associated integral membrane proteins. We envision that this technology will push the boundaries of fully atomic-resolution modeling of these biological systems, thus enabling unprecedented exploration of meso-scale phenomena (mechanisms, kinetics, energetics) with atomic detail at commodity hardware prices.  相似文献   

13.
左旋苯丙胺(又称左苯丙胺, RAT)在临床上被用于治疗多种病症,作用在中枢神经细胞多巴胺受体上,同时它具有依赖性和成瘾性。为了探讨RAT被用作药物的药理和成瘾机制,本文用分子模拟获得RAT与多巴胺第三受体(D3R)复合蛋白优化结构,并且采用伞形样本平均力势(PMF)方法和卵磷脂脂质分子模拟生物膜,采用分子动力学模拟获得RAT在D3R结构中分子通道运动轨迹和自由能变化。RAT通过D3R结构中的功能分子通道,朝细胞外方向传输运动的自由能变化为91.4 kJ·mol-1。RAT通过D3R结构中的保护分子通道,朝细胞双层膜方向传输运动的自由能变化为117.7 kJ·mol-1。自由能数值表明RAT分子更容易通过D3R结构中的功能分子通道,发挥其功能作用,增大功能多巴胺分子的释放,导致包括依赖性和成瘾性多种功能效果。研究结果证明RAT被用作药物的药理和成瘾机制与它在多巴胺受体中的分子通道上传输动力学和机制有密切关联。  相似文献   

14.
To investigate the mechanism of biological cell membrane electroporation at the nanosecond and nanometer scale, we tracked pore-forming lipids and water in molecular dynamics simulations of a palmitoyloleoylphosphatidylcholine bilayer in a minimum porating electric field. Although the field-generated torque tilts the mean head group dipole a few degrees away from its equilibrium, zero-field position relative to the bilayer plane, this change in conformation does not appear to contribute directly to the development of the pore-initiating aggregation of lipid head groups and water that leads to the formation of a membrane-spanning hydrophilic pore. Field-directed rotation of the head group dipoles in the plane of the incipient pore wall, in combination with water dipole and solvation interactions at the aqueous-lipid interface, is one component in the coordinated ensemble of electroporation events.  相似文献   

15.
The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ∼0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of −3.6 kcal/mol, located at 15–16 Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8–5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and chloroform.  相似文献   

16.
For the development of surface functionalized bilayers, we have synthesized lipophilic oligonucleotides to combine the molecular recognition mechanism of nucleic acids and the self-assembly characteristics of lipids in planar membranes. A lipophilic oligonucleotide consisting of 21 thymidine units and two lipophilic nucleotides with an alpha-tocopherol moiety as a lipophilic anchor was synthesized using solid-phase methods with a phosphoramadite strategy. The interaction of the water soluble lipophilic oligonucleotide with vesicular lipid membranes and its capability to bind complementary DNA strands was studied using complementary methods such as NMR, EPR, DSC, fluorescence spectroscopy, and fluorescence microscopy. This oligonucleotide inserted stably into preformed membranes from the aqueous phase. Thereby, no significant perturbation of the lipid bilayer and its stability was observed. However, the non-lipidated end of the oligonucleotide is exposed to the aqueous environment, is relatively mobile, and is free to interact with complementary DNA strands. Binding of the complementary single-stranded DNA molecules is fast and accomplished by the formation of Watson-Crick base pairs, which was confirmed by 1H NMR chemical shift analysis and fluorescence resonance energy transfer. The molecular structure of the membrane bound DNA double helix is very similar to the free double-stranded DNA. Further, the membrane bound DNA double strands also undergo regular melting. Finally, in raft-like membrane mixtures, the lipophilic oligonucleotide was shown to preferentially sequester into liquid-disordered membrane domains.  相似文献   

17.
In this work we have studied the interaction of zervamicin IIB (ZrvIIB) with the model membranes of eukaryotes and prokaryotes using all-atom molecular dynamics. In all our simulations zervamicin molecule interacted only with lipid headgroups but did not penetrate the hydrophobic core of the bilayers. During the interaction with the prokaryotic membrane zervamicin placed by its N-termini towards the lipids and rotated at an angle of 40° relatively to the bilayer surface. In the case of eukaryotic membrane zervamicin stayed in the water and located parallel to the membrane surface. We compared hydrogen bonds between peptide and lipids and concluded that interactions of ZrvIIB with prokaryotic membrane are stronger than those with eukaryotic one. Also it was shown that two zervamicin molecules formed dimer and penetrated deeper in the area of lipid headgroups.  相似文献   

18.
Cobra cytotoxins, small proteins of three-fingered toxin family, unspecifically damage membranes in different cells and artificial vesicles. However, the molecular mechanism of this damage is not yet completely understood. We used steered molecular dynamics simulations to study the interaction of cardiotoxin A3 from Naja atra cobra venom with hydrated 1-palmitoyl-2-oleoyl-1-sn-3-phosphatidylcholine (POPC) bilayer. The studied system included one cytotoxin molecule, 64 lipid molecules (32 molecules in each monolayer) and 2500 water molecules. It was found that the toxin interacted with zwitterionic bilayer formed by POPC. During first nanosecond of simulation the toxin molecule was oriented toward membrane surface by loops' basement including cytotoxin regions Cys14-Asn19 and Cys38-Ser46. This orientation was stable enough and was not changed during next 6 ns of simulation. The obtained data suggest that cytotoxin molecule cannot penetrate into membrane composed of zwitterionic lipids without some auxiliary interaction.  相似文献   

19.
The dynamics and state of lipid bilayer-internal hydration water of unilamellar lipid vesicles dispersed in solutions is characterized. This study was enabled by a recently developed technique based on Overhauser dynamic nuclear polarization (DNP)-driven amplification of (1)H nuclear magnetic resonance (NMR) signal of hydration water. This technique can, in the full presence of bulk water, selectively quantify the translational dynamics of hydration water within ~10 ? around spin labels that are specifically introduced to the local volume of interest within the lipid bilayer. With this approach, the local apparent diffusion coefficients of internal water at different depths of the lipid bilayer were determined. The modulation of these values as a response to external stimuli, such as the addition of sodium chloride or ethanol and the lipid phase transitions, that alter the fluctuations of bilayer interfaces together with the activation energy values of water diffusivity shows that water is not individually and homogeneously solvating lipid's hydrocarbon tails in the lipid bilayer. We provide experimental evidence that instead, water and the lipid membrane comprise a heterogeneous system whose constituents include transient hydrophobic water pores or water structures traversing the lipid bilayer. We show how these transient pore structures, as key vehicles for passive water transport can better reconcile our experimental data with existing literature data on lipid bilayer hydration and dynamics.  相似文献   

20.
The potential of mean force (PMF) of a phospholipid in a bilayer is a key thermodynamic property that describes the energetic cost of localized lipid defects. We have calculated the PMF by umbrella sampling using molecular dynamics simulations. The profile has a deep minimum at the equilibrium position in the bilayer and steeply rises for displacements both deeper into the bilayer and moving away from the bilayer. As the lipid loses contact with the bilayer, the profile abruptly flattens without a significant barrier. The calculated free energy difference of 80 kJ/mol between the minimum of the PMF and the value in water agrees well with the free energy difference calculated from the experimentally measured critical micelle concentration. Significant water/lipid defects form when a lipid is forced into the bilayer interior, in the form of a small water pore that spans the membrane. The energy required to form such a water pore is also found to be 80 kJ/mol. On the basis of this energy, we estimate the lipid flip-flop rate and permeability rate of sodium ions. The resulting rates are in good agreement with experimental measurements, suggesting lipid flip-flop and basal permeability of ions are pore mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号