首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An ammonium ion-crown ether interaction has been successfully used to construct porphyrin-single-walled carbon nanotube (SWNT) donor-acceptor hybrids. The [18]crown-6 to alkyl ammonium ion binding strategy resulted in porphyrin-SWNT nanohybrids that are stable and soluble in DMF. The porphyrin-SWNT hybrids were characterized by spectroscopic, TEM, and electrochemical techniques. Both steady-state and time-resolved emission studies revealed efficient quenching of the singlet excited state of the porphyrins and free-energy calculations suggested that electron-transfer quenching occurred. Nanosecond transient absorption spectral results supported the charge-separation quenching process. Charge-stabilization was also observed for the nanohybrids in which the lifetime of the radical ion pairs was around 100 ns. The present nanohybrids were also used to reduce the hexyl viologen dication (HV2+) and to oxidize 1-benzyl-1,4-dihydronicotinamide in solution in an electron-pooling experiment. Accumulation of the radical cation (HV.+) was observed in high yields, which provided additional proof for the occurrence of photoinduced charge separation. The present study demonstrates that a hydrogen-bonding motif is a successful self-assembly method to build SWNTs bearing donor-acceptor nanohybrids, which are useful for light-energy harvesting and photovoltaic applications.  相似文献   

3.
Bichromophoric compounds BP-C-NP and BP-C-NBD were synthesized with benzophenone chromophore (BP) as the donor, and 2-naphthyl (NP) and norbornadiene group (NBD) as the acceptor, respectively. Their intramolecular triplet energy transfer was examined. The bridges linking the donor and acceptors in these molecules involve a crown ether moiety complexing a sodium ion. Phosphorescence quenching, flash photolysis and photosensitized isomerization experiments indicate that intramolecular triplet energy transfer occurs with rate constants of about 3.3 x 10(5) and 4.8 x 10(5) s(-1) and efficiencies of about 33 and 42 % for BP-C-NP and BP-C-NBD, respectively. Theoretical calculations indicate that these molecules adopt conformations below room temperature which allow their two-end chromophores conducive to through-space energy transfer.  相似文献   

4.
5.
Ethynylated 2H-cyclohepta[b]furan-2-ones 5-15 have been prepared by Pd-catalyzed alkynylation of 3-iodo-5-isopropyl-2H-cyclohepta[b]furan-2-one (2) with the corresponding ethynylarenes or the reaction of 2-iodothiophene with 3-ethynyl-5-isopropyl-2H-cyclohepta[b]furan-2-one (4) under Sonogashira-Hagihara conditions. Compounds 5-15 reacted with tetracyanoethylene in a formal [2+2] cycloaddition reaction, followed by ring opening of the initially formed [2+2] cycloadducts, cyclobutenes, to afford the corresponding 1,1,4,4-tetracyanobutadienyl (TCBD) chromophores 16-26 in excellent yields. The intramolecular charge-transfer interactions between the 2H-cyclohepta[b]furan-2-one ring and TCBD acceptor moiety were investigated by UV/Vis spectroscopy and theoretical calculations. The redox behavior of the novel TCBD derivatives 16-26 was examined by cyclic voltammetry and differential pulse voltammetry, which revealed multistep electrochemical reduction properties, depending on the number of TCBD units in the molecule. Moreover, a significant color change was observed by UV/Vis spectroscopy under electrochemical reduction conditions.  相似文献   

6.
The structure of the charge-transfer complex hexakis(n-hexyloxy)triphenylene-2,4,7-trinitro-9-fluorenone (HAT6-TNF) has been characterized by neutron scattering, X-ray diffraction (XRD), optical microscopy, and dielectric relaxation spectroscopy (DRS). On the basis of these data and the 1:1 stoichiometry, a consistent structure for the complex is proposed. This structure differs markedly from structures previously proposed for similar materials, because the TNF molecules are found to be situated between the discotic columns rather than sandwiched between the discotic molecules of a given column. The addition of TNF to HAT6 is found to stiffen the structure, and quasi-elastic neutron scattering shows that the local dynamics of the discotic molecules in HAT6-TNF is slowed by the presence of the TNF molecules. This scenario is consistent with the observation of two VFT-type (VFT=Vogel-Fulcher-Tamman) dielectric relaxation processes that relate to the columnar glass transition and a polyethylene-like hindered glass transition originating from the nano-phase-separated fraction of the aliphatic tails.  相似文献   

7.
The synthesis of the first fully conjugated tetrathiafulvalene–tetracyano‐p‐quinodimethane ((TTF)–TCNQ)‐type system has been carried out by means of a Julia–Kocienski olefination reaction. In particular, a tetracyanoanthraquinodimethane (TCAQ) formyl derivative and two new sulfonylmethyl‐exTTFs (exTTF=2‐[9‐(1,3‐dithiol‐2‐ylidene)anthracen‐10(9H)‐ylidene]‐1,3‐dithiole)—prepared as new building blocks—were linked. A variety of experimental conditions reveal that the use of sodium hexamethyldisilazane (NaHMDS) as base in THF afforded the E olefins with excellent stereoselectivity. Theoretical calculations at the B3LYP/6‐31G** level point to highly distorted exTTF and TCAQ that form an almost planar stilbene unit between them. Although calculations predicted appreciable electronic communication between the donor and the acceptor, cyclic voltammetric studies did not substantiate this effect. It was only in photophysical assays that the electronic communication emerged in the form of a charge‐transfer (CT) absorption and emission. Once photoexcited (i.e., the locally excited state or excited charge‐transfer state), an ultrafast, subpicosecond charge separation leads to a radical ion pair state in which the spectroscopic features of the radical cation of exTTF as well as the radical anion of TCAQ are discernable. The radical ion pair is metastable and undergoes a fast ((1.0±0.2) ps) charge recombination to reconstitute the electronic ground state. Such ultrafast charge separation and recombination processes come as a consequence of the very short vinyl linkage between the two electroactive units.  相似文献   

8.
A wide variety of monomeric and oligomeric, donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDs) have been synthesized by [2+2] cycloaddition between tetracyanoethylene (TNCE) and donor-substituted alkynes, followed by electrocyclic ring opening of the initially formed cyclobutenes. Reaction yields are often nearly quantitative but can be affected by the electron-donating power and steric demands of the alkyne substituents. The intramolecular charge-transfer (CT) interactions between the donor and TCBD acceptor moieties were comprehensively investigated by X-ray crystallography, electrochemistry, UV-visible spectroscopy, and theoretical calculations. Despite the nonplanarity of the new chromophores, which have a substantial twist between the two dicyanovinyl planes, efficient intramolecular CT interactions are observed, and the crystal structures demonstrate a high quinoid character in strong donor substituents, such as N,N-dimethylanilino (DMA) rings. The maxima of the CT bands shift bathochromically upon reduction of the amount of conjugative coupling between strong donor and acceptor moieties. Each TCBD moiety undergoes two reversible, one-electron reduction steps. Thus, a tri-TCBD derivative with a 1,3,5-trisubstituted benzene core shows six reversible reduction steps within an exceptionally narrow potential range of 1.0 V. The first reduction potential E(red,1) is strongly influenced by the donor substitution: introduction of more donor moieties causes an increasingly twisted TCBD structure, a fact that results in the elevation of the LUMO level and, consequently, a more difficult first reduction. The potentials are also strongly influenced by the nature of the donor residues and the extent of donor-acceptor coupling. A careful comparison of electrochemical data and the correlation with UV-visible spectra made it possible to estimate unknown physical parameters such as the E(red,1) of unsubstituted TCBD (-0.31 V vs Fc+/Fc) as well as the maxima of highly broadened CT bands. Donor-substituted TCBDs are stable molecules and can be sublimed without decomposition. With their high third-order optical nonlinearities, as revealed in preliminary measurements, they should become interesting chromophores for ultra-thin film formation by vapor deposition techniques and have applications in opto-electronic devices.  相似文献   

9.
10.
Attaching electron-rich 1,3-dithiol-2-ylidene moieties to polynitrofluorene electron acceptors leads to the formation of highly conjugated compounds 6 to 11, which combine high electron affinity with a pronounced intramolecular charge transfer (ICT) that is manifested as an intense absorption band in their visible spectra. Such a rare combination of optical and electronic properties is beneficial for several applications in optoelectronics. Thus, incorporation of fluorene-dithiole derivative 6a into photoconductive films affords photothermoplastic storage media with dramatically increased photosensitivity in the ICT region. A wide structural variation of the dithiole and fluorene parts of the molecules reveals excellent correlation between the ICT energy and the reduction potential with the Hammett's parameters for the substituents. Although only a small solvatochromism of the ICT band was observed, heating the solution led to a pronounced blueshift, which was probably as a result of increased twisting around the C9=C14 bond that links the fluorene and dithiole moieties. X-ray crystallographic analysis of 7a, 8a, 10a, 11a and 13a confirms an ICT interaction in the ground state of the molecules. The C9=C14 double bond between the donor and acceptor is substantially elongated and its length increases as the donor character of the dithiole moiety is enhanced.  相似文献   

11.
12.
Synthesis and characterization of dendrimers containing thienylbenzene repeating units, red-emitting benzothiadiazole core, and triarylamine peripheries that bear naphthyl units are reported. The relevant dendrimers of different generations are classified as G(nb) (n=1-3), while the tert-butyl dendrimers G(na) with the acceptor alone were also synthesized to serve as control chromophores that avoid donor-acceptor interactions. The resulting dendrimers are capable of harvesting photon energy through efficient energy transfer among donor-acceptor moieties, so that highly luminescent red fluorophores result. Transient fluorescence studies suggest that the energy transfer and its efficiency are approximately unity in all G(a) dendrimers, whereas the rate of energy transfer for the G(b) dendrimers is suppressed, that is, charge transfer from the core to the periphery is a significant quenching pathway. These dendrimers are amorphous in nature with high glass transition temperatures (176-201 degrees C). Electroluminescent devices were fabricated by using the dendrimers as hole-transporting emitters, and the devices exhibit promising red emission parameters.  相似文献   

13.
A series of monomeric and oligomeric donor-substituted 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs) with various topologies have been synthesized by means of thermal [2+2] cycloaddition between tetracyanoethylene (TCNE) and donor-substituted alkynes, followed by retro-electrocyclization. One-electron-reduced and -oxidized stages of the donor-substituted TCBDs were generated by chemical methods. The obtained radical anions and radical cations were studied by using electron paramagnetic resonance/electron nuclear double resonance (EPR/ENDOR) spectroscopy, supported by density functional theory (DFT) calculations. The extent of pi-electron delocalization in the paramagnetic species was investigated in terms of the EPR parameters. Despite favorable molecular orbital (MO) coefficients, the EPR results suggest that in radical anions the spin and charge are confined to the electron-withdrawing TCBD moieties on the hyperfine EPR timescale. The observed spin localization is presumably caused by an interplay between the nonplanarity of the studied pi systems, limited pi-electron conjugation, and very likely counterion effects. In radical cations, an analogous spin and charge localization confined to the electron-donating N,N-dialkylaniline moieties was found. In this case, an efficient electron delocalization is disabled by small MO coefficients at the joints between the donor and acceptor portions of the studied TCBDs.  相似文献   

14.
Novel nanohybrids based on covalently and noncovalently functionalized single-wall carbon nanotubes (SWNTs) have been prepared and assembled for the construction of photoactive electrodes. Polymer-grafted SWNTs were synthesized by free-radical polymerization of (vinylbenzyl)trimethylammonium chloride. Poly[(vinylbenzyl)trimethylammonium chloride] (PVBTAn+) was also noncovalently wrapped around SWNTs to form stable, positively charged SWNT/PVBTAn+ suspensions in water. Versatile donor-acceptor nanohybrids were prepared by using the electrostatic/van der Waals interactions between covalent SWNT-PVBTAn+ and/or noncovalent SWNT/PVBTAn+ and porphyrins (H2P8- and/or ZnP8-). Several spectroscopic, microscopic, transient, and photoelectrochemical measurements were taken to characterize the resulting supramolecular complexes. Photoexcitation of the nanohybrids afforded long-lived radical ion pairs with lifetimes as long as 2.2 micros. In the final part, photoactive electrodes were constructed by using a layer-by-layer technique on an indium tin oxide covered glass support. Photocurrent measurements gave remarkable internal photon-to-current efficiencies of 3.81 and 9.90 % for the covalent ZnP8-/SWNT-PVBTAn+ and noncovalent ZnP8-/SWNT/PVBTAn+ complex, respectively, when a potential of 0.5 V was applied.  相似文献   

15.
16.
Dispersible single-walled carbon nanotubes grafted with poly(4-vinylpyridine), SWNT-PVP, were tested in coordination assays with zinc tetraphenylporphyrin (ZnP). Kinetic and spectroscopic evidence corroborates the successful formation of a SWNT-PVPZnP nanohybrid. Within this SWNT-PVPZnP nanohybrid, static electron-transfer quenching (2.0+/-0.1) x 10(9) s(-1) converts the photoexcited-ZnP chromophore into a radical-ion-pair state with a microsecond lifetime, namely one-electron oxidized-ZnP and reduced-SWNT.  相似文献   

17.
18.
19.
A series of donor-acceptor arrays (exTTF-oPPE-C60) containing pi-conjugated oligo(phenyleneethynylene) wires (oPPE) of different length between pi-extended tetrathiafulvalene (exTTF) as electron donor and fullerene (C60) as electron acceptor has been prepared by following a convergent synthesis. The key reaction in these approaches is the bromo-iodo selectivity of the Hagihara-Sonogashira reaction and the deprotecting of acetylenes with different silyl groups to afford the corresponding donor-acceptor conjugates in moderate yields. The electronic interactions between the three electroactive species were determined by using UV-visible spectroscopy and cyclic voltammetry. Our studies clearly confirm that, although the C60 units are connected to the exTTF donor through pi-conjugated oPPE frameworks, no significant electronic interactions are observed in the ground state. Theoretical calculations predict how a simple exchange from C=C double bonds (i.e., oligo(p-phenylenevinylene) to C triple chemical bond C triple bonds (i.e., oPPE) in the electron donor-acceptor conjugates considerably alters long-range electron transfer. Photoexcitation of exTTF-oPPE-C60 leads to the following features: a transient photoproduct with maxima at 660 and 1000 nm, which are unambiguously attributed to the photolytically generated radical-ion-pair state, [exTTF*+-oPPE-C60*]. Both charge-separation and charge-recombination processes give rise to a molecular-wire behaviour of the oPPE moiety with an attenuation factor (beta) of (0.2+/-0.05) A(-1).  相似文献   

20.
Four linear π-conjugated systems with 1,3-diethyl-1,3,2-benzodiazaborolyl [C(6)H(4)(NEt)(2)B] as a π-donor at one end and dimesitylboryl (BMes(2)) as a π-acceptor at the other end were synthesized. These unusual push-pull systems contain phenylene (-1,4-C(6)H(4)-; 1), biphenylene (-4,4'-(1,1'-C(6)H(4))(2)-; 2), thiophene (-2,5-C(4)H(2)S-; 3), and dithiophene (-5,5'-(2,2'-C(4)H(2)S)(2)-; 4) as π-conjugated bridges and different types of three-coordinate boron moieties serving as both π-donor and π-acceptor. Molecular structures of 2, 3, and 4 were determined by single-crystal X-ray diffraction. Photophysical studies on these systems reveal blue-green fluorescence in all compounds. The Stokes shifts for 1, 2, and 3 are notably large at 7820-9760 cm(-1) in THF and 5430-6210 cm(-1) in cyclohexane, whereas the Stokes shift for 4 is significantly smaller at 5510 cm(-1) in THF and 2450 cm(-1) in cyclohexane. Calculations on model systems 1'-4' show the HOMO to be mainly diazaborolyl in character and the LUMO to be dominated by the empty p orbital at the boron atom of the BMes(2) group. However, there are considerable dithiophene bridge contributions to both orbitals in 4'. From the experimental data and MO calculations, the π-electron-donating strength of the 1,3-diethyl-1,3,2-benzodiazaborolyl group was found to lie between that of methoxy and dimethylamino groups. TD-DFT calculations on 1'-4', using B3LYP and CAM-B3LYP functionals, provide insight into the absorption and emission processes. B3LYP predicts that both the absorption and emission processes have strong charge-transfer character. CAM-B3LYP which, unlike B3LYP, contains the physics necessary to describe charge-transfer excitations, predicts only a limited amount of charge transfer upon absorption, but somewhat more upon emission. The excited-state (S(1)) geometries show the borolyl group to be significantly altered compared to the ground-state (S(0)) geometries. This borolyl group reorganization in the excited state is believed to be responsible for the large Stokes shifts in organic systems containing benzodiazaborolyl groups in these and related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号