首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Discontinuous molecular dynamics simulations are performed on homopolymer/solvent and surfactant/solvent systems. The homopolymer and surfactant molecules are modeled as freely jointed square-well chains. Solvent molecules are modeled as both hard spheres and square-well spheres. We explore how the various interaction parameters affect the types of phase behavior and micellization observed in the homopolymer/solvent and surfactant/solvent systems. Increasing the packing fraction of homopolymers in both hard-sphere solvents and square-well solvents increases the solvent's ability to dissolve homopolymers only when the segment-solvent interaction strength exceeds a critical value. Although only upper critical solution temperature (UCST) behavior is observed for homopolymers in hard-sphere solvents, both UCST and lower critical solution temperature (LCST) behavior are observed for homopolymers in square-well solvents, depending upon the interaction strengths and chain length. This indicates that it is necessary to account for the solvent-solvent attraction to model LCST behavior in supercritical CO2. Our simulation results on surfactants in hard-sphere solvents show that it is necessary to account for the interactions experienced by both the head and tail blocks in order to capture the essential features of surfactant/supercritical CO2 systems.  相似文献   

2.
A coarse-grained molecular dynamics simulation has been carried out to study the adsorption and self-organization for a model surfactant/supercritical CO2 system confined in the slit-shape nanopores with amorphous silica-like surfaces. The solid surfaces were designed to be CO2-philic and CO2-phobic, respectively. For the CO2-philic surface, obviously surface adsorption is observed for the surfactant molecules. The various energy profiles were used to monitor the lengthy dynamics process of the adsorption and self-assembly for surfactant micelles or monomers in the confined spaces. The equilibrium properties, including the morphologies and micelle-size distributions of absorbed surfactants, were evaluated based on the equilibrium trajectory data. The interaction between the surfactant and the surface produces an obvious effect on the dynamics rate of surfactant adsorption and aggregation, as well as the final self-assembly equilibrium structures of the adsorbed surfactants. However, for the CO2-phobic surfaces, there are scarcely adsorption layers of surfactant molecules, meaning that the CO2-phobic surface repels the surfactant molecules. It seems to conclude that the CO2 solvent depletion near the interfaces determines the surface repellence to the surfactant molecules. The effect of the CO2-phobic surface confinement on the surfactant micelle structure in the supercritical CO2 has also been discussed. In summary, this study on the microscopic behaviors of surfactant/Sc-CO2 in confined pores will help to shed light on the surfactant self-assembly from the Sc-CO2 fluid phase onto solid surfaces and nanoporous media.  相似文献   

3.
Lattice Monte Carlo simulations are used to study the effect of nonionic surfactant concentration and CO2 density on the micellization and phase equilibria of supercritical CO2/surfactant systems. The interaction parameter for carbon dioxide is obtained by matching the critical temperature of the model fluid with the experimental critical temperature. Various properties such as the critical micelle concentration and the size, shape, and structure ofmicelles are calculated, and the phase diagram in the surfactant concentration-CO2 density space is constructed. On increasing the CO2 density, we find an increase in the critical micelle concentration and a decrease in the micellar size; this is consistent with existing experimental results. The variation of the micellar shape and structure with CO2 density shows that the micelles are spherical and that the extension of the micellar core increases with increasing micellar size, while the extension of the micellar corona increases with increasing CO2 density. The predicted phase diagram is in qualitative agreement with experimental phase diagrams for nonionic surfactants in carbon dioxide.  相似文献   

4.
Fibrillary protein aggregates rich in beta-sheet structure have been implicated in the pathology of several neurodegenerative diseases. In this work, we investigate the formation of fibrils by performing discontinuous molecular dynamics simulations on systems containing 12 to 96 model Ac-KA(14)K-NH(2) peptides using our newly developed off-lattice, implicit-solvent, intermediate-resolution model, PRIME. We find that, at a low concentration, random-coil peptides assemble into alpha-helices at low temperatures. At intermediate concentrations, random-coil peptides assemble into alpha-helices at low temperatures and large beta-sheet structures at high temperatures. At high concentrations, the system forms beta-sheets over a wide range of temperatures. These assemble into fibrils above a critical temperature which decreases with concentration and exceeds the isolated peptide's folding temperature. At very high temperatures and all concentrations, the system is in a random-coil state. All of these results are in good qualitative agreement with those by Blondelle and co-workers on Ac-KA(14)K-NH(2) peptides. The fibrils observed in our simulations mimic the structural characteristics observed in experiments in terms of the number of sheets formed, the values of the intra- and intersheet separations, and the parallel peptide arrangement within each beta-sheet. Finally, we find that when the strength of the hydrophobic interaction between nonpolar side chains is high compared to the strength of hydrogen bonding, amorphous aggregates, rather than fibrillar aggregates, are formed.  相似文献   

5.
Carbon-dioxide-expanded liquids, which are mixtures of organic liquids and compressed CO2, are novel media used in chemical processing. The authors present a molecular simulation study of the transport properties of liquid mixtures formed by acetonitrile and carbon dioxide, in which the CO2 mole fraction is adjusted by changing the pressure, at a constant temperature of 298 K. They report values of translational diffusion coefficients, rotational correlation times, and shear viscosities of the liquids as function of CO2 mole fraction. The simulation results are in good agreement with the available experimental data for the pure components and provide interesting insights into the largely unknown properties of the mixtures, which are being recognized as important novel materials in chemical operations. We find that the calculated quantities exhibit smooth variation with composition that may be represented by simple model equations. The translational and rotational diffusion rates increase with CO2 mole fraction for both the acetonitrile and carbon dioxide components. The shear viscosity decreases with increasing amount of CO2, varying smoothly between the values of pure acetonitrile and pure carbon dioxide. Our results show that adjusting the amount of CO2 in the mixture allows the variation of transport rates by a factor of 3-4 and liquid viscosity by a factor of 8. Thus, the physical properties of the mixture may be tailored to the desired range by changes in the operating conditions of temperature and pressure.  相似文献   

6.
Coacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime. Isothermal titration calorimetry analyzed within the framework of the simple Satake-Yang model identifies binding parameters for the surfactant-lean phase, whereas a calculation for polymer-bound micelles coexisting with free micelles is analyzed in the surfactant-rich redissolution regime. This analysis provides a preliminary understanding of the interactions governing the observed phase behavior. The resulting thermodynamic properties, including binding constants and the molar Gibbs free energies, enthalpies, and entropies, identify the relative importance of both hydrophobic and electrostatic interactions and provide a first approximation for the corresponding microstructures in the different phases. Our study also addresses the stability and metastability of oppositely charged polyelectrolytes and surfactant mixtures.  相似文献   

7.
Using a short ranged Lennard-Jones interaction and a long ranged electrostatic potential, CH4 under high pressure was modeled. Molecular dynamics simulations on small clusters (108 and 256 molecules) were used to explore the phase diagram. Regarding phase transitions at different temperatures, our numerical findings are consistent with experimental results to a great degree. In addition, the hysteresis effect is displayed in our results.  相似文献   

8.
Quasi-elastic Neutron Scattering combined with Molecular Dynamics simulations have been carried out to gain further insight into the CO2 dynamics in LiY and NaY Faujasites. In both materials, it was pointed out that the transport diffusivity (DT) increases with the loading whereas the self diffusivity (DS) decreases. In addition, it was shown that LiY exhibits a significant slower CO2 self diffusivity process due to a strong interaction between the Li+ cation and the adsorbate molecules at the initial stage of diffusion. This result is consistent with higher simulated activation energy in this cation exchanged faujasite form. By contrast, the transport diffusivity is revealed to be slightly faster in LiY than in NaY.  相似文献   

9.
In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using nonequilibrium molecular dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for model nanofluids in the liquid state (spherical nonmetallic nanoparticles+Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decreases with nanoparticle concentration. Then, by changing the nature of the nanoparticle (size, mass, and internal stiffness) and that of the solvent (quality and viscosity), various trends are exhibited. In all cases, the single particle thermodiffusion is positive, i.e., the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8-4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein-like law.  相似文献   

10.
A class II atomistic force field with Lennard-Jones 6-9 nonbond interactions is used to investigate equations of state (EOS) for important high explosive detonation products N(2) and H(2)O in the temperature range of 700-2500 K and pressure range of 0.1-10 GPa. A standard sixth order parameter-mixing scheme is then employed to study a 2:1 (molar) H(2)O:N(2) mixture, to investigate, in particular, the possibility of phase separation under detonation conditions. The simulations demonstrate several important results, including (i) the accuracy of computed EOS for both N(2) and H(2)O over the entire range of temperature and pressure considered, (ii) accurate mixing-demixing phase boundary as compared to experimental data, and (iii) the departure of mixing free energy from that predicted by ideal mixing law. The results provide comparison and guidance to state-of-the-art chemical kinetic models.  相似文献   

11.
Dilute and concentrated surfactant systems at the solid-liquid interface are examined using classical molecular dynamics simulations. Particular emphasis is placed on understanding how surfactants aggregate and form the micellar structure, how micelles change shape at high concentrations in aqueous media and in the presence of hydrophilic surfaces, and at what force this micellar structure breaks apart during indentation of micelle-covered surfaces with a proximal probe microscope tip. The specific system of interest is C12TAB (n-dodecyltrimethylammonium bromide) surfactant in an aqueous medium that is modeled with empirical potentials. The simulations predict that the micelle structure in water is compact and either spherical or elliptical in shape. In the presence of a hydrophilic surface of silica, the structure evolves into a flat elliptical shape, in agreement with experimental findings. The simulated indentation of the micelle/silica system causes the micelle to break apart at an indentation force of about 1 nN and form a surfactant monolayer. The predicted force curve is in excellent agreement with experimental measurements.  相似文献   

12.
Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete "Verlet" algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence of a "shadow Hamiltonian" H [S. Toxvaerd, Phys. Rev. E 50, 2271 (1994)], i.e., a Hamiltonian close to the original H with the property that the discrete positions of the Verlet algorithm for H lie on the analytic trajectories of H. The shadow Hamiltonian can be obtained from H by an asymptotic expansion in the time step length. Here we use the first non-trivial term in this expansion to obtain an improved estimate of the discrete values of the energy. The investigation is performed for a representative system with Lennard-Jones pair interactions. The simulations show that inclusion of this term reduces the standard deviation of the energy fluctuations by a factor of 100 for typical values of the time step length. Simulations further show that the energy is conserved for at least one hundred million time steps provided the potential and its first four derivatives are continuous at the cutoff. Finally, we show analytically as well as numerically that energy conservation is not sensitive to round-off errors.  相似文献   

13.
A new approach is developed to study the dynamics of the localized process in solutions and other condensed phase systems. The approach employs a fluctuating elastic boundary (FEB) model which encloses the simulated system in an elastic bag that mimics the effects of the bulk solvent. This alleviates the need for periodic boundary conditions and allows for a reduction in the number of solvent molecules that need to be included in the simulation. The boundary bag is modeled as a mesh of quasi-particles connected by elastic bonds. The FEB model allows for volume and density fluctuations characteristic of the bulk system, and the shape of the boundary fluctuates during the course of the simulation to adapt to the configuration fluctuations of the explicit solute-solvent system inside. The method is applied to the simulation of a Lennard-Jones model of liquid argon. Various structural and dynamical quantities are computed and compared with those obtained from conventional periodic boundary simulations. The agreement between the two is excellent in most cases, thus validating the viability of the FEB method.  相似文献   

14.
Phase behavior was investigated for water/supercritical CO 2 (W/scCO2) microemulsions stabilized with sodium bis(1H,1H,2H,2H-heptadecafluorodecyl)-2-sulfosuccinate (8FS(EO) 2) mixed with various guest surfactants. Only for the mixtures with fluorocarbon-hydrocarbon hybrid anionic surfactants (FC6-HC n), the maximum water-to-surfactant molar ratio (W0(c)) was larger than that estimated from linear interpolation of the W0(c) values for pure 8FS(EO) 2 and pure guest surfactant. Fourier transform infrared (FT-IR) measurement for the microemulsion revealed that the mixing of 8FS(EO) 2 with FC6-HC n can prevent a phase transition from the microemulsion to the liquid crystal even in the presence of excess water. It was also found from the measurement of water/scCO 2 interfacial tension that the area occupied per surfactant molecule was markedly increased by the mixing with FC6-HC n. The loose molecular packing, probably due to a microsegregation of 8FS(EO) 2 and FC6-HC n, is consistent with the enhanced stability of the microemulsion upon surfactant mixing.  相似文献   

15.
The phase behavior and self-assembled structures of perfluoroalkyl sulfonamide ethoxylate, C8F17SO2N(C3H7)(CH2CH2O)20H (abbreviated as C8F 17EO20), a nonionic fluorocarbon surfactant in an aqueous system, has been investigated by the small-angle X-ray scattering (SAXS) technique. The C8F17EO20 forms micelles and different liquid crystal phases depending on the temperature and composition. The fluorocarbon micellar structure induced by temperature or composition change and added fluorocarbon cosurfactant has been systematically studied. The SAXS data were analyzed by the indirect Fourier transformation (IFT) and the generalized indirect Fourier transformation (GIFT) depending on the volume fraction of the surfactant and complemented by plausible model calculations. The C8F17EO20 forms spherical type micelles above critical micelle concentration (cmc) in the dilute region. The micelle tends to grow with temperature; however, the growth is not significant on changing temperature from 15-75 degrees C, which is attributed to the higher clouding temperature of the surfactant (>100 degrees C). On the other hand, the micellar structure (shape and size) is apparently unaffected by composition (1-25 wt %) at 25 degrees C. Nevertheless, addition of fluorocarbon cosurfactant of structure C8F17SO2N(C3H7)(CH2CH2O)H (abbreviated as C8F17EO1) to the semidilute solution of C8F17EO20 (25 wt %) favors micellar growth, which finally leads to the formation of viscoelastic wormlike micelles, as confirmed by rheometry and supported by SAXS. The onset sphere-to-wormlike transition in the structure of micelles in the C8F17EO20/water/C8F17EO1 system is due to the fact that the C8F17EO1 tends to go to the surfactant palisade layer so that the critical packing parameter increases due to a decrease in the effective cross-sectional area of the headgroup. As a result, spherical micelles grow into a cylinder, which after a certain concentration entangle to form a rigid network structure of wormlike micelles.  相似文献   

16.
We studied the structural evolution of a 270-atom Ag-Au bimetallic nanoparticle (2 nm in size) with varying composition and temperature. The liquid to solid transition region and the solid-state structure were investigated using molecular dynamics simulations. To determine the exact transition temperature region, we applied the mean square displacement and structure deviation methods, as well as the generally used caloric curve of potential energy versus temperature. The results showed that a complete solid-solution phase diagram of the binary Ag-Au system was obtained. Irrespective of the composition, the freezing temperature of a Ag-Au bimetallic nanoparticle was lower than that of the bulk state by a margin of several hundred degrees, and three different solid-state structures are proposed in relation to the Au composition. Our phase diagram offers guidance for the application of Ag-Au nanoparticles.  相似文献   

17.
Surfactant molecules self-assemble in aqueous solutions to form various micellar structures such as spheres, rods, or lamellae. Although phase transitions in surfactant solutions have been studied experimentally, their molecular mechanisms are still not well understood. In this work, we show that molecular dynamics (MD) simulations using the coarse-grained (CG) MARTINI force field and explicit CG solvent, validated against atomistic MD studies, can accurately represent micellar assemblies of cetyltrimethylammonium chloride (CTAC). The effect of salt on micellar structures is studied for aromatic anionic salts, e.g., sodium salicylate, and simple inorganic salts, e.g., sodium chloride. Above a threshold concentration, sodium salicylate induces a sphere to rod transition in the micelle. CG MD simulations are shown to capture the dynamics of this shape transition and support a mechanism based on the reduction in the micelle-water interfacial tension induced by the adsorption of the amphiphilic salicylate ions. At the threshold salt concentration, the interface is nearly saturated with adsorbed salicylate ions. Predictions of the effect of salt on the micelle structure in different CG solvent models, namely, single-site standard water and three-site polarizable water, show qualitative agreement. This suggests that phase transitions in aqueous micelle solutions could be investigated by using standard CG water models which allow for 3 orders of magnitude reduction in the computational time as compared to that required for atomistic MD simulations.  相似文献   

18.
We use simulations to predict the stability and mechanical properties of two amphiphilic bilayer membranes. We carry out atomistic MD simulations and investigate whether it is possible to use an existing coarse-grained (CG) surfactant model to map the membrane properties. We find that certain membranes can be represented well by the CG model, whereas others cannot. Atomistic MD simulations of the erucate membrane yield a headgroup area per surfactant a(0) of 0.26 nm(2), an elastic modulus K(A) of 1.7 N/m, and a bending rigidity kappa of 5 k(B)T. We find that the CG model, with the right choice for the size and potential well depth of the head, correctly reproduces a(0), kappa, as well as the fluctuation spectrum over the whole range of q values. Atomistic MD simulations of EHAC, on the other hand, suggest that this membrane is unstable. This is indicated by the fact that kappa is of the order of k(B)T, which means that the interface is extremely flexible and diffuse, and K(A) is close to zero, which means that the surface tension is zero. We argue that the CG model can be used if the headgroups are uncharged, dipolar, or effectively dipolar due to headgroup charge screening induced by counterion condensation.  相似文献   

19.
The fluctuating elastic boundary (FEB) model for molecular dynamics has recently been developed and validated through simulations of liquid argon. In the FEB model, a flexible boundary which consists of particles connected by springs is used to confine the solvated system, thereby eliminating the need for periodic boundary conditions. In this study, we extend this model to the simulation of bulk water and solvated alanine dipeptide. Both the confining potential and boundary particle interaction functions are modified to preserve the structural integrity of the boundary and prevent the leakage of the solute-solvent system through the boundary. A broad spectrum of structural and dynamic properties of liquid water are computed and compared with those obtained from conventional periodic boundary condition simulations. The applicability of the model to biomolecular simulations is investigated through the analysis of conformational population distribution of solvated alanine dipeptide. In most cases we find remarkable agreement between the two simulation approaches.  相似文献   

20.
Control of the size and agglomeration of micellar systems is important for pharmaceutical applications such as drug delivery. Although shape-related transitions in surfactant solutions are studied experimentally, their molecular mechanisms are still not well understood. In this study, we use coarse-grained molecular dynamics simulations to describe micellar assemblies of pentaethylene glycol monododecyl ether (C(12)E(5)) in aqueous solution at different concentrations. The obtained size and aggregation numbers of the aggregates formed are in very good agreement with the available experimental data. Importantly, increase of the concentration leads to a second critical micelle concentration where a transition to rod-like aggregates is observed. This transition is quantified in terms of shape anisotropy, together with a detailed structural analysis of the micelles as a function of aggregation number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号