首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using gas-phase electron diffraction it has been demonstrated that a composition of known isomer mixtures can be determined with error limits of about 5%, all relevant structural parameters being refined simultaneously by the least-squares method. If, however, corresponding bond distances and valence angles have erroneously been assigned equal values in the two isomers, a large increase in the least-squares error limits from 5% to 12% is noticed. Apparently innocent assumptions about some of the parameters can lead to incorrect isomer composition and to too small error limits as estimated by the least-squares formulae.

From the reinvestigation of pure cis-1,2-dichloroethene the following bond distances (ra) and valence angles () were determined: r(C---H) = 1.090(29) Å, r(C=C) = 1.345(6) Å, r(C---Cl) = 1.716(4) Å, C=C---Cl = 123.8(2)°, C=C---H = 119.4(26)°. Error limits are 2σ.  相似文献   


2.
The molecular structure of 1,1,2,2-tetrabromodisilane has been investigated using gas-phase electron diffraction data obtained at 110°C. At this temperature the molecules exist as a mixture of about equal parts (X = 0.5 ±0.2) of the two conformers with the H---Si---Si---H torsion angle equal to 180° (anti) or 60° (gauche). Assuming that the two conformers differ in their geometries only in the torsion angle φ, some of the important distance (ra) and angle () parameters are: r(Si---Si) = 2.349(19) Å, r(Si---Br) = 2.205(5) Å, r(Si---H) = 1.485 Å (assumed), Br---Si---Br = 110.1(1.6)°, Si---Si---Br = 107.1(1.2)° Si---Si---H = 108.6° (assumed). The error limits are 2σ. The observed conformational composition (Xanti = 0.5(0.2)) corresponds to an energy difference between the conformers of ΔE = E(gauche) — E(anti) = 0.5 ± 0.6 kcal mol−1, assuming ΔS = Rln2.  相似文献   

3.
Dichlorotetramethyldisiloxane is studied by gas-phase electron diffraction at room temperature. The least-squares values of the bond distances (rg) and bond angles () are: r(C---H)=1.084(5) Å, r(Si---O) = 1.624(2) Å, r(Si---C) = 1.852(2) Å, r(Si---Cl) = 2.067(2) Å, SiOSi = 154.0° (1.5), ClSiO = 110.2° (0.8), ClSiC = 109.6°(0.7), HCSi = 111.7°(1.5), OSiC = 110.0°(0.8), τ1 (zero corresponds to the Si---Cl bond trans to the Si---O---Si linkage) = 78°(6) and τ2 = 141°(19). A two-conformer model cannot be ruled out.  相似文献   

4.
A gas phase electron diffraction study of 3-bromo-2-methyl-1-propene shows that there is predominantly a gauche conformer present. Data recorded at 20 and 180°C show 4(8) and 5(4)% respectively of a second confomer with a planar heavy atom skeleton. The gauche structural results in terms of ra distances and angles at 20°C were found to be: r(C---C) = 1.331(9) Å, r(C---CH2Br) = 1.484(6) Å, r(C---CH3) — r(C---CH2Br) = 0.017 Å, (assumed), r(C---Br) = 1.965(6) Å, C=C---CH2Br = 121.5(0.7)°, C=C---CH2Br — C=C---CH3 = 0.7° (constraint from molecular mechanics calculation), C---C---Br = 112.2(0.5)°, torsional ANGLE = 112.5(2.2)°. Uncertainties are given as 2σ, where σ includes uncertainties due to correlation among observations, electron wavelength and other parameters used in the data reduction. The results obtained from the 180°C data agree very well with those given above. The molecular mechanics calculations yield information consistent with the experimental results.  相似文献   

5.
The molecular structure of 2-furoyl chloride has been investigated by gas-phase electron diffraction at 86°C. Two distinct conformers were identified, a more stable planar form with the furan oxygen and the carbonyl oxygen syn and a less stable planar (or nearly planar) anti form. Assuming that the two forms differ in their geometries only in the O=C---C---O torsion angles and assuming the furan ring to have C2v symmetry, the results for some of the distances (ra) and angles (a) are: r(C---H) = 1.110(20) Å, r(C=O) = 1.207(6) Å, r(C---O) = 1.378(10) Å, r(C??? = 1.465(13) A, (r(C---C)) (average carbon—carbon distance in the furan ring) = 1.392(8) A Δr(C---C) (difference between single and double carbon—carbon distances in the furan ring) = 0.069 A (assumed), r(C---Cl) = 1.787(6) A, C=C---COCl = 131.6(9)°, C=C---O = 110.9(4)°, C=C---H = 127.7(13.4)°, C---C=O = 125.8(8)° and C---C---Cl = 111.8(6)°. At 359 K the observed amount of the conformer with the oxygen atoms syn was 69.8(14.2)%.  相似文献   

6.
Gaseous 3-chloro-1-butene has been studied experimentally by electron diffraction (ED) at 20 and 180°C, and at these temperatures, 76(10)% and 62(10)%, respectively, of the most stable conformer i.e. the one having a hydrogen atom eclipsing the double bond, were found. The conformer with the chlorine atom eclipsing the C=C bond was also present. However, from the experimental data it was not possible to establish conclusive evidence for the conformer with an eclipsed CH3 group. Molecular mechanics (MM) calculations and ab initio calculations using a 4-21 basis set were carried out with complete geometry optimization, and calculated parameters from each of the methods were used in combination with the ED data. Such calculations indicated the existence of all three conformers mentioned above. Least-squares analysis including constraints from the ab initio calculation gave as a result the following molecular structure (ra distances and ??? angles) for the predominant conformer: r(C=C) = 1.337(6) Å, r(=C---C) = 1.503(4) Å, r(C---CH3) = 1.522 Å, R(C---Cl) = 1.813(4) Å, <r(C---H)> = 1.089(18) Å, ???C=C---C = 122.9(2.1)°, ???C---C---C = 112.6(2.2)°, ???=C---C---Cl = 109.9(0.2)°, ???Cl---C---CH3 = 109.3°. = 121.9° and = 110.0(1.3)°. The torsional angles were then τ(C=C---C---Cl> = −119.4° and τ(C=C---C---CH3) = 120.3(2.1)°. Error limits are 2σ (σ includes estimates of systematic errors and correlations), parameters without quoted uncertainties are dependent or were constrained relative to another parameter. Combining the ED data with MM results yielded parameters consistent with those given above.  相似文献   

7.
Microwave spectra of allylsilane and its 13C and deuterium substituted species have been measured and assigned for the skew isomer. The rs structure was determined with the aid of several assumptions. Some of the parameters determined are; r(C=C) = 1.328 ± 0.007 Å, r(C---C) = 1.492 ± 0.008 Å, (CCC) = 126.7 ± 0.8°, (CCSi) = 111.6 ± 0.5° and τ(CCCSi) = 106.8 ± 1.1°. Dipole moments and their components were also determined for the CH2 = CHCH2SiH3 and CH2=CHCH2SiD3 species. Hyperconjugation between the C=C π bond and the C---Si σ bond is discussed.  相似文献   

8.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

9.
The molecular structure of 3-methylthiophene

has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) − r(S---C5) and r(C2=C3) − r(C4=C5) were fixed at the 3–21G* value of 0.002Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   


10.
The molecular structure of trichloronitromethane has been studied in the gas phase using electron diffraction data. The molecules are found to undergo low barrier rotation about the CN bond with a planar CNO2 moiety in agreement with HF/MP2/B3LYP/6-311G(d,p) calculations. The experimental data are consistent with a dynamic model using a potential function for the torsion of V = (V6/2)(1 − cos 6τ). The major geometrical parameters (rg and ) for the eclipsed form, obtained from least squares analysis of the data are as follows: r(NO3) = r(NO4) = 1.213(2) Å, r(CN) = 1.592(6) Å, r(CCl)av = 1.749(1) Å, Cl5CN/Cl6CN = 109. 6°/106.3°(2), O3NC/O4NC = 117. 6°/114.1°(4), τCl5C1N2O3 = 0.0°, and V6 = 0.20(25) kcal/mol.  相似文献   

11.
The molecular structure of 3-methylthiophene has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) - r(S=C5) and r(C2=C3)-r(C4 =C5) were fixed at the 3–21G* value of 0.002 Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   

12.
The gas phase molecular structure of methyl vinyl ether at room temperature has been studied by joint analysis of electron diffraction and microwave data. Constraints on geometrical and thermal parameters were derived from the geometry and force field of the s-cis form, obtained by ab-initio calculations (4–21 G basis set) after complete geometry relaxation. A range of models was investigated that fits all available data (infrared, microwave and electron diffraction). The following rg/r-parameters were obtained: C=C: 1.337 Å, C(sp2)---O: 1.359 Å, C(sp3)---O: 1.427 Å, : 1.102 Å C=C---O : 127.3° and COC: 116.8°. Experimental rg---re (ab initio) corrections are given for C=C, C(sp2)---O and Csp3)---O.

This investigation demonstrates that molecular orbital constrained electron diffraction is sufficiently reliable and in such a manner that it can be applied to more complicated problems.  相似文献   


13.
The structure of acetyl cyanide has been determined by making joint use of the electron diffraction intensities measured in the present study and the rotational constants reported by Krisher and Wilson. The thermal average bond distances are: rg(C-H) = 1.116±0.011 Å, rg(CN) = 1.167±0.010 Å, rg(C=O) = 1.208±0.009 Å, rg(=C-C) = 1.477±0.008 Å and rg(C-Cmethyl) = 1.518±0.009 Å. The bond angles in the zero-point average structure (rav) are: (Cmethyl-C=O) = 124.6±0.7°, (C-C-C) = 114.2±0.9°, (C-CN) = 179.2±2.2° and (H-C-H) = 109.2±0.7°. The uncertainties represent the estimated limits of experimental error. The C-C single bond placed between the double and triple bonds is longer than those in vinylacetylene, acrylonitrile and propynal. Other structural parameters are also compared with those in related molecules. The infrared and Raman spectra of this molecule have been measured, and Urey-Bradley force constants have been determined.  相似文献   

14.
The structure of 1,1-difluorosilacyclopentane has been studied by gas-phase electron diffraction. The molecule is found to have a barrier of pseudorotion of 2.25(90) kcal mol−1. The potential function has minimum at the twist form (C2) symmetry and maxima at the envelope forms. The major bond distances (itr)g) and valence angles obtained from the least-squares refinements with error estimates are as follow: r(C---H) = 1.128(7) A, r(C---C)av = 1.553(15) A, r(Si---F) = 1.582(6) A, r(Si---C) = 1.853(3) A, (CSiF) = 113.4′(3), CCC = 106°(1), and Tau(C1C2C3C4) = 56.0°(32).  相似文献   

15.
2,3,4-triphenyl-1-oxa-4-azabutadine (C20H15NO) has been studied by X-ray analysis and AM1 molecular orbital methods. It crystallises in the triclinic space group P-1 with a=9.414(3), b=10.479(3), c=8.385(2) Å, =103.31(3)°, β=97.10(3)°, γ=74.09(1)°, V=772.5(4) Å3, Z=2, Dc=1.227 gcm−3, and μ(MoK)=0.075 mm−1 and F000=300. The structure was solved by direct methods and refined to R=0.043 for 2672 reflections [I>2σ(I)]. The conformational analysis of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations. The minimum conformation energies were calculated as a function of the three torsion angles θ1(O(1)C(7)C(8)N(1)), θ2(C(8)N(1)C(15)C(16)) and θ3(C(14)C(9)C(8)N(1)). The results are compared with the X-ray results. C=O and C=N groups are twisted about each other by 95.5(2)°.  相似文献   

16.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

17.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   

18.
The pentaamminecobalt(III) complex with the 3-cyano-2,4-pentanedionate anion coordinated through the nitrile nitrogen has been characterized by X-ray crystallography. The crystals of [(NH3)5CoNCacac](Cl)(ClO4)·2H2O are triclinic, space group P , a = 10.245(2) Å, b = 14.071(4) Å, c = 6.971(2) Å, = 90.03(3)°, β = 109.86(2)°, γ = 108.91(2)°, V= 887.1 Å3, Z = 2, Dc = 1.64 g cm−3, F(000) = 456, Mo-K radiation, λ = 0.71069 Å, μ(Mo-K) = 12.7 cm−1. The structure was determined by the heavy-atom method, and refined by block-diagonal least-squares calculations, R = 0.0537, Rw = 0.0607, for 2499 observed reflections. Principal dimensions are: Co---N(NH3) trans to NCacac 1.940(5), other Co---N(NH3) 1.967(2), Co---N(NCacac) 1.911(5) Å. The pendant acac moiety is best described in terms of a delocalized bond network with, for example, C---C distances in the range 1.44–1.52(1) Å. Several reactions involving this free acac group are also described including the preparation and characterization of the dimeric species pentaamminecobalt(III) - μ - (3 - cyano - 2,4 - pentanedionato) - bis(propylenediamine) cobalt(III) perchlorate.  相似文献   

19.
A series of primary amido gallium alkyl complexes that includes a base free dimer, [tBu2Ga(μ-N(H)tBu)]2 (1), Lewis base stabilized monomeric complexes, nBu2Ga(N(H)tBu)(THF) (2) and nBu2Ga[NH(2,6-Me2C6H3)]py (3) and an anionic complex, nBu2Ga[NH(2,6-Me2C6H3)]2[Li(Et2O)] (4) is reported. Complex 1 crystallizes in the triclinic space group P-1 (a = 10.265(5) Å, B = 15.752(6) Å, C = 8.932(4) Å, = 90.32(3)°, β = 105.61(3)°, γ = 88.24(4)°) with two molecules, each residing on an inversion center, in the asymmetric unit. Structural analysis revealed a planar Ga2N2 core with both the bridging N and the Ga centers in distorted tetrahedral environments (Ga---C distances 2.052(3)-2.065(3) Å and Ga---N distances 2.060(3)-2.069(3) Å). The use of excess amido ligand allowed the isolation and crystallization of 4. Complex 4 crystallized in the monoclinic space group P21/n (a = 8.666(2) Å, B = 22.305(3) Å, C = 15.570(3) Å, β = 103.47(2)) with Z = 4. The pseudotetrahedral gallium center has a coordination sphere composed of two amido ligands (Ga---N1 = 2.011(8) Å, Ga---N2 = 2.006(7) Å), and two nBu ligands (Ga---C17 = 2.002(9) Å Ga---C21 = 1.985(12) Å). A bridging interaction of the lithium cation with the lone pair of electrons on each of amido nitrogen atoms generates a molecular core which is made up of a planar Ga---N1---Li---N2 distorted square (N1---Gal---N2 94.4°, Gal---N2---Lil 86.2°, N1---Li1---N2 92.2°, Gal---N1---Li1 87.1°).  相似文献   

20.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号