首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new spectrophotometric flow-injection (FI) method is proposed for the determination of glucose based on the redox reaction of hydroquinone with iron(III). When a glucose solution containing quinone is passed through the immobilized glucose oxidase column introduced in FI system, quinone is reduced to hydroquinone by glucose. In the presence of 1,10-phenanthroline (phen), iron(III) is then quantitatively reduced by hydroquinone to iron(II) followed by the formation of iron(II)-phen complex (λmax=510 nm). An FI peak observed at 510 nm corresponds to the concentration of glucose. The wide dynamic range for glucose was obtained in the range of 1×10−6–1×10−3 mol l−1 at a sampling rate of 24 h−1 and the detection limit (S/N=3) was 5×10−7 mol l−1. Relative standard deviations were 0.78, 0.44 and 0.23% (n=5) for 5×10−6, 5×10−5 and 5×10−4 mol l−1 of glucose, respectively. The proposed method was successfully applied to the determination of glucose in control blood sera, human blood plasma and wine.  相似文献   

2.
Yao T  Satomura M  Nakahara T 《Talanta》1994,41(12):2113-2119
A flow-injection system is proposed for the simultaneous determination of sulfite and phosphate in wine. A sulfite oxidase immobilized reactor and purine nucleoside phosphorylase-xanthine oxidase co-immobilized reactor are incorporated at fixed positions (parallel configuration) in the flow line, which is based on the splitting of the flow after sample injection and subsequent confluence. A poly(1,2-diaminobenzene)-coated platinum electrode is used as an amperometric detector to detect selectively hydrogen peroxide generated enzymatically in the enzyme reactors, without any interference from oxidizable species and proteins present in wine. Because each channel has a different residence time, two peaks are obtained. The first peak corresponds to sulfite and the second peak to phosphate. The peak current is linearly related to the concentrations of sulfite between 1 × 10−5 and 2 × 10−3M and phosphate between 2 × 10−5 and 5 × 10−3M. The simultaneous determination of sulfite and phosphate in wine can be performed at a rate of 30 samples/hr with satisfactory precision (less than 1.2% RSD) and no pretreatment except for the sample dilution.  相似文献   

3.
A direct sensing method for monitoring meat quality was developed. The sensor is composed of an Ag/AgCl electrode and a platinum electrode on which putrescine oxidase or xanthine oxidase were immobilized to estimate bacterial spoilage or the progress of aging, respectively. A potential-step chronoamperometric method was applied in which the potential was stepped from 300 mV to 600 mV. A linear relationship was obtained between 5 and 60 nmol g−1 for putrescine (Put) and 0.05 and 1.0 μmol g−1 for hypoxanthine (Hx). The coefficient of variation was 0.75% for 20 nmol ml−1 Put solution and 2.2 for a meat sample using the putrescine sensor, and 1.09% for 0.25 μmol ml−1 Hx solution and 2.6% for a meat sample using the xanthine sensor. The pH requirements and substrate selectivity were suitable for the direct measurement of substrates on the surface of meat. From the results of practical experiments, the direct sensing method was indicated to be useful with some modifications for the estimation of meat quality during aging.  相似文献   

4.
Fenoterol and salbutamol were determined by electrogenerated chemiluminescence (ECL) coupled with flow injection analysis (FIA), using Ru(bpy)32+ as the luminescent substance. Fenoterol and salbutamol oxidize together with the ruthenium 2,2-bipyridyl at a platinum electrode, which leads to an increase in the luminescent intensity, and this increase is proportional to the analyte concentration. For fenoterol a linear calibration curve within the range from 1.0 × 10−5 to 1.0 × 10−4 mol l−1 was obtained with a correlation coefficient of 0.998 (n = 5) and for salbutamol the linear analytical curve was also obtained in this range with a correlation coefficient of 0.995 (n = 5). The relative standard deviation was estimated as ≤2.5% for 3 × 10−5 mol l−1 for fenoterol solution and as ≤1.3% for 5.0 × 10−5 mol l−1 salbutamol solution for 15 successive injections. The limit of detection for fenoterol was 2.4 × 10−7 mol l−1 and for salbutamol was 4.0 × 10−7 mol l−1. Fenoterol and salbutamol were successfully determined in drug tablets and the soluble components of the matrix did not interfere in the luminescent emission. The results obtained using the luminescent methodology were not statistically different from those obtained by UV-spectrophotometry at 95% confidence level.  相似文献   

5.
Masadome T  Sonoda R  Asano Y 《Talanta》2000,52(6):1123-1130
A potentiometric flow injection determination method for iodide ion in a photographic developing solution was proposed by utilizing a flow-through type iodide ion-selective electrode detector. The sensing membrane of the electrode was Ag2S–AgI membrane. The response of the electrode detector as a peak-shape signal was obtained for injected iodide ion in a photographic developing solution. A linear relationship in the subnernstian zone was found to exist between peak height and the concentration of the iodide ion in a photographic developing solution in a concentration range from 0 to 6.0×10−5 mol l−1. The relative standard deviation for ten injections of 2×10−5 mol l−1 iodide ion in a photographic developing solution was 0.96% and the sampling rate was approximately 12–13 samples h−1. The iodide ion could be determined under coexisting of an organic reducing reagent and inorganic electrolytes of high concentration in a photographic developing solution sample solution by the present method.  相似文献   

6.
Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l−1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 × 10−6-0.1 mol l−1 with a detection limit of 1.0×10−6 mol l−1. A 1 × 10−4 mol l−1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.  相似文献   

7.
Sakai T  Liu X  Maeda Y 《Talanta》1999,49(5):913-1001
A simple, sensitive and rapid spectrophotometric method for the determination of neostigmine by flow injection analysis (FIA) coupled with an ion associate extraction has been developed. The three-line manifold was assembled. Neostigmine(200 μl) was injected into a distilled water stream and the pH was adjusted to 10 with a borate–phosphate buffer solution. Then, the stream was mixed with the ion-pairing tetrabromophenolphthalein ethylester (TBPEH)-1,2-dichloroethane solution. After phase separation with a double membrane phase separator, absorbance was measured at 610 nm. A linear calibration graph was obtained between 1×10−7 mol l−1 and 5×10−7 mol l−1 of neostigmine. Up to 48 samples h−1 could be processed with a relative standard deviation (R.S.D.) of 0.5% (n=5) for 4×10−7 mol l−1 neostigmine. The proposed system was applied to the simple, reproducible and rapid determination of neostigmine in commercial pharmaceuticals.  相似文献   

8.
A capillary electrophoretic (CE) method for the determination of hypoxanthine and xanthine in urine was developed to diagnose xanthinuria. The linearity was excellent up to 200 μmol l−1 for the two compounds and the limit of quantitation was 2 μmol 1−1. A comparison o the results obtained using CE was made with those obtained by the high-performance liquid chromatographic (HPLC) technique described previously. With regard to specificity, sensitivity and reproducibility, the results are similar but CE is more rapid than HPLC.  相似文献   

9.
Ohura H  Imato T  Yamasaki S 《Talanta》1999,49(5):1383-1015
A rapid potentiometric flow injection technique for the simultaneous determination of oxychlorine species such as ClO3–ClO2 and ClO3–HClO has been developed, using both a redox electrode detector and a Fe(III)–Fe(II) potential buffer solution containing chloride. The analytical method is based on the detection of a large transient potential change of the redox electrode due to chlorine generated via the reaction of the oxychlorine species with chloride in the potential buffer solution. The sensitivities to HClO and ClO2 obtained by the transient potential change were enhanced 700–800-fold over that using an equilibrium potential. The detection limit of the present method for HClO and ClO2 is as low as 5×10−8 M with use of a 5×10−4 M Fe(III)–1×10−3 M Fe(II) buffer containing 0.3 M KCl and 0.5 M H2SO4. On the other hand, sensitivity to ClO3 was low when a potential buffer solution containing 0.5 M H2SO4 was used, but could be increased largely by increasing the acidity of the potential buffer. The detection limit for ClO3 was 2×10−6 M with the use of a 5×10−4 M Fe(III)–1×10−3 M Fe(II) buffer containing 0.3 M KCl and 9 M H2SO4. By utilizing the difference in reactivity of oxychlorine species with chloride in the potential buffer, a simultaneous determination method for a mixed solution of ClO3–ClO2 or ClO3–HClO was designed to detect, in a timely manner, a transient potential change with the use of two streams of potential buffers which contain different concentrations of sulfuric acid. Analytical concentration ranges of oxychlorine species were 2×10−5–2×10−4 M for ClO3, and 1×10−6–1×10−5 M for HClO and ClO2. The reproducibility of the present method was in the range 1.5–2.3%. The reaction mechanism for the transient potential change used in the present method is also discussed, based on the results of batchwise experiments. The simultaneous determination method was applied to the determination of oxychlorine species in a tap water sample, and was found to provide an analytical result for HClO, which was in good agreement with that obtained by the o-tolidine method and to provide a good recovery for ClO3 added to the sample.  相似文献   

10.
Mao L  Shi G  Tian Y  Liu H  Jin L  Yamamoto K  Tao S  Jin J 《Talanta》1998,46(6):1547-1556
A novel thin-layer amperometric detector (TLAD) based on chemically modified ring-disc electrode and its application for simultaneous measurements of nitric oxide (NO) and nitrite (NO2) in rat brain were demonstrated in this work. The ring-disc electrode was simultaneously sensitive to nitric oxide (NO) and nitrite (NO2) by modifying its inner disc with electropolymerized film of cobalt(II) tetraaminophthalocyanine (polyCoTAPc)/Nafion and its outer ring with poly(vinylpyridine) (PVP), respectively. The ring-disc electrode was used to constitute a novel TLAD in radial flow cell for simultaneous measurements of NO and NO2 in rat brain combined with techniques of high performance liquid chromatography (HPLC) and in vivo microdialysis. It was found that the basal concentration of NO in the caudate nucleus of rat brain is lower than 1.0×10−7 mol l−1, NO2 concentration is 5.0×10−7 mol l−1 and NO exists in brain maybe mainly in the form of its decomposed product.  相似文献   

11.
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or -amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 × 10−6 M and a linear concentration range of 0.01–3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another ( -amino acid) sensor gave a detection limit of 3 × 10−5 M -alanine, injected with a linear concentration range of 7.0 × 10−5-1.4 × 10−2 M. Glucose and -amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.  相似文献   

12.
Campuzano S  Pedrero M  Pingarrón JM 《Talanta》2005,66(5):1310-1319
The construction and performance under flow-injection conditions of an integrated amperometric biosensor for hydrogen peroxide is reported. The design of the bioelectrode is based on a mercaptopropionic acid (MPA) self-assembled monolayer (SAM) modified gold disk electrode on which horseradish peroxidase (HRP, 24.3 U) was immobilized by cross-linking with glutaraldehyde together with the mediator tetrathiafulvalene (TTF, 1 μmol), which was entrapped in the three-dimensional aggregate formed.

The amperometric biosensor allows the obtention of reproducible flow injection amperometric responses at an applied potential of 0.00 V in 0.05 mol L−1 phosphate buffer, pH 7.0 (flow rate: 1.40 mL min−1, injection volume: 150 μL), with a range of linearity for hydrogen peroxide within the 2.0 × 10−7–1.0 × 10−4 mol L−1 concentration range (slope: (2.33 ± 0.02) × 10−2 A mol−1 L, r = 0.999). A detection limit of 6.9 × 10−8 mol L−1 was obtained together with a R.S.D. (n = 50) of 2.7% for a hydrogen peroxide concentration level of 5.0 × 10−5 mol L−1. The immobilization method showed a good reproducibility with a R.S.D. of 5.3% for five different electrodes. Moreover, the useful lifetime of one single biosensor was estimated in 13 days.

The SAM-based biosensor was applied for the determination of hydrogen peroxide in rainwater and in a hair dye. The results obtained were validated by comparison with those obtained with a spectrophotometric reference method. In addition, the recovery of hydrogen peroxide in sterilised milk was tested.  相似文献   


13.
The anodization of mercury microelectrodes was investigated in synthetic samples containing several strong and weak electrolytes at different concentrations. In particular, the effects on mercury anodization due to the presence of NaOH, HClO4, NaCl, NaI, NaF, Na2SO4, NaHCO3, Na2CO3, tartaric and citric acids, were studied in solutions containing either each species or mixtures of them, and without addition of supporting electrolyte. Some of the electrode processes studied led to linear calibration plots e.g. 1 × 10−5 − 1 × 10−4M Cl, 1 × 10−6 − 1 × 10−5M I, 5 × 10−4 − 3 × 10−3M SO42−, 5 × 10−4 − 2 × 10−2M HCO3, with typical correlation coefficients of 0.998–0.999. The anodization of mercury microelectrodes was also investigated directly in wine, rain, tap and mineral water, without pretreatment and without addition of supporting electrolyte. In the real samples only the ions Cl and HCO3 could be quantified, and the values found were in agreement, within 3–5%, with the reference values obtained by using Italian standard methods for food.  相似文献   

14.
Wang Q  Li N 《Talanta》2001,55(6):243-1225
The thiolactic acid (TLA) self-assembled monolayer modified gold electrode (TLA/Au) is demonstrated to catalyze the electrochemical response of norepinephrine (NE) by cyclic voltammetry. A pair of well-defined redox waves were obtained and the calculated standard rate constant (ks) is 5.11×10−3 cm s−1 at the self-assembled electrode. The electrode reaction is a pseudo-reversible process. The peak current and the concentration of NE are a linear relationship in the range of 4.0×10−5–2.0×10−3 mol l−1. The detection limit is 2.0×10−6 mol l−1. By ac impedance spectroscopy the apparent electron transfer rate constant (kapp) of Fe(CN)3−/Fe(CN)4− at the TLA/Au electrode was obtained as 2.5×10−5 cm s−1.  相似文献   

15.
Electrochemical studies of famotidine were carried out using voltammetric techniques: cyclic voltammetry, linear sweep and square wave adsorptive stripping voltammetry. The dependence of the current on pH, buffer concentration, nature of the buffer, and scan rate was investigated. The best results for the determination of famotidine were obtained in MOPS buffer solution at pH 6.7. This electroanalytical procedure enabled to determine famotidine in the concentration range 1 × 10−9–4 × 10−8 mol L−1 by linear sweep adsorptive stripping voltammetry (LS AdSV) and 5 × 10−10–6 × 10−8 mol L−1 by square wave adsorptive stripping voltammetry (SW AdSV). Repeatability, precision and accuracy of the developed methods were checked. The detection and quantification limits were found to be 1.8 × 10−10 and 6.2 × 10−10 mol L−1 for LS AdSV and 4.9 × 10−11 and 1.6 × 10−10 mol L−1 for SW AdSV, respectively. The method was applied for the determination of famotidine in urine.  相似文献   

16.
The cathodic adsorptive electrochemical behavior of guanine in the presence of some metal ions at the static mercury drop electrode was investigated. A 1.0×10−3 mol l−1 NaOH or a 2.0×10−2 mol l−1 Hepes buffer at pH 8.0 solutions were used as supporting electrolytes. The reduction peak potential for guanine was found to be around −0.15 V, which is very close to the mercury reduction wave. A new peak appears at −0.60 V in the presence of copper or at −1.05 V in the presence of zinc. A square wave voltammetric procedure for electroanalytical determination of guanine in 2.0×10−2 mol l−1 Hepes buffer at pH 8.0 containing 1.6×10−5 mol l−1of copper ions, was developed. An accumulation potential of −0.15 V during 270 s for the prior adsorption of guanine at the electrode surface was used. The response of the system was found to be linear in the range of guanine concentration from 6.62×10−8 to 1.32×10−7 mol l−1 and the detection limit was 7.0×10−9 mol l−1. The influence of DNA bases such as adenine, cytosine and thymine was also examined. Cyclic voltammetry was used to characterize the interfacial and redox mechanism.  相似文献   

17.
Two independent methods for the determination of diclofenac were simultaneously implemented in an automated analytical system, based on the concept of sequential injection analysis, providing real-time assessment of results quality. The potentiometric detection was carried out with an ion-selective electrode based on a cyclodextrin while for the fluorimetric determination the sample was previously subject to in-line irradiation with UV light. The potentiometric and photochemical-fluorimetric determinations exhibited linear working ranges of 5×10−6 to 1×10−2 and 1×10−6 to 1×10−4 mol dm−3, respectively. Relative standard errors of 0.5% for the potentiometric determination and 0.6% for the photochemical-fluorimetric determination were obtained after 10 consecutive injections of a 5×10−5 mol dm−3 diclofenac standard solution. The sampling rate was about 32 samples h−1. Both methods were applied in the analysis of pharmaceutical formulations. The quality of results obtained was evaluated by comparison to the reference method, with no statistically significant differences for a 95% confidence level.  相似文献   

18.
Flow injection visible diffuse reflectance quantitative analysis of nickel   总被引:1,自引:0,他引:1  
Flow injection (FI) methodology, using diffuse reflectance in the visible region of the spectrum, for the analysis of nickel, precipitated in the form of dimethylglyoximate, is presented. A reflectance cell, constructed in polytetrafluoroethylene, using a LED (light emitting diode) as light source and a LDR (light dependent resistor) as detector, is described. The analytical signal (S) correlates with nickel concentration (C) between 1.6 × 10−4 and 6.6 × 10−4 mol L−1. This correlation is described by the equation S = −1.108 + 3.314 × 104C − 2.081 × 107C2 (r = 0.9996). The experimentally observed limit of detection is about 1.3 × 10−4 mol L−1, as in lower concentrations the formation of precipitate is not observed. The experimental quantitation limit is about 1.6 × 10−4 mol L−1. The mean R.S.D. (relative standard deviation) is about 2.7%. Samples containing nickel were analyzed and the results obtained in this method were compared with those of other methods using the statistical Student's t-test.  相似文献   

19.
Chen GN  Zhang L  Lin RE  Yang ZC  Duan JP  Chen HQ  Hibbert DB 《Talanta》2000,50(6):1275-1281
The electrogenerated chemiluminescent (ECL) behavior of hemin at a platinum electrode in the alkaline solution has been investigated in detail. Under the optimum conditions the linear response range of hemin is 1.0×10−5–1.0×10−8 g ml−1, the detection limit was 1.0×10−8 g ml−1, and the relative standard derivation for 1×10−7 g ml−1 hemin was 2.8%. It has been also found that hemin would catalyze the ECL of lucigenin at a platinum electrode in a neutral solution in the presence of hydrogen peroxide, the catalytic ECL intensity was linear with the concentration of hemin in the range of 1.0×10−14–1.0×10−10 g ml−1. IgG labeled with hemin was used to examine the ECL catalytic activity of hemin after conjugating to protein, and the results showed that hemin retained ECL catalytic activity when conjugated to protein.  相似文献   

20.
In this work, we demonstrate for the first time that 4-methyl-5-nitrocatechol (4M5NC) and 2,4,5-trihydroxytoluene (2,4,5-THT), two compounds obtained from the 2,4-DNT biodegradation are recognized by polyphenol oxidase as substrates. An amperometric biosensor is described for detecting these compounds and for evaluating the efficiency of the 2,4-DNT conversion into 4M5NC in the presence of bacteria able to produce the 2,4-DNT-biotransformation. The biosensor format involves the immobilization of polyphenol oxidase into a composite matrix made of glassy carbon microspheres and mineral oil. The biosensor demonstrated to be highly sensitive for the quantification of 4M5NC and 2,4,5-THT. The analytical parameters for 4M5NC are the following: sensitivity of (7.5 ± 0.1) × 105 nAM−1, linear range between 1.0 × 10−5 and 8.4 × 10−5 M, and detection limit of 4.7 × 10−6 M. The sensitivity for the determination of 2,4,5-THT is (6.2 ± 0.6) × 106 nAM−1, with a linear range between 1.0 × 10−6 and 5.8 × 10−6 M, and a detection limit of 2.0 × 10−7. Under the experimental conditions, it was possible to selectively quantify 4M5NC even in the presence of a large excess of 2,4-DNT. The suitability of the biosensor for detecting the efficiency of 2,4-DNT biotransformation into 4M5NC is demonstrated and compared with HPLC-spectrophotometric detection, with very good correlation. This biosensor holds great promise for decentralized environmental testing of 2,4-DNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号