首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pressure derivative of the Curie temperature dTc/dp of the Heusler alloys Ni2MnZ(Z = Al, Ga, In, Sn and Sb) has been obtained from the results of temperature dependence of initial permeability under pressure up to about 6 kbar. For all alloys the Curie temperatures increase linearly with increasing pressure at the rate of dTc/dp: +0.7 K/kbar for Ni2MnAl, +1.0 K/kbar for Ni2MnGa, +0.9 K/kbar for Ni2MnIn, +1.4 K/kbar for Ni2MnSn and +4.1 K/kbar for Ni2MnSb. On the basis of these results, the interatomic dependence of the exchange interaction for Heusler alloys is discussed. The magnetic susceptibilities of those alloys are also reported.  相似文献   

2.
Samples of a superconducting indium nanocomposite based on a thin-film porous dielectric matrix prepared by the Langmuir–Blodgett method are obtained for the first time, and their low-temperature electrophysical and magnetic properties are studied. Films with thickness b ≤ 5 μm were made from silicon dioxide spheres with diameter D = 200 and 250 nm; indium was introduced into the pores of the films from the melt at a pressure of P ≤ 5 kbar. Thus, a three-dimensional weakly ordered structure of indium nanogranules was created in the pores, forming a continuous current-conducting grid. Measurements of the temperature and magnetic field dependences of the resistance and magnetic moment of the samples showed an increase in the critical parameters of the superconductivity state of nanostructured indium (critical temperature Tc ≤ 3.62 K and critical magnetic field Hc at T = 0 K Hc(0) ≤ 1700 Oe) with respect to the massive material (Tc = 3.41 K, Hc(0) = 280 Oe). In the dependence of the resistance on temperature and the magnetic field, a step transition to the superconductivity state associated with the nanocomposite structure was observed. A pronounced hysteresis M(H) is observed in the dependence of the magnetic moment M of the nanocomposite on the magnetic field at T < Tc, caused by the multiply connected structure of the current-conducting indium grid. The results obtained are interpreted taking into account the dimensional dependence of the superconducting characteristics of the nanocomposite.  相似文献   

3.
The magnetoresistance and magnetization of single-crystal samples of rare-earth dodecaborides RB12 (R = Ho, Er, Tm, Lu) have been measured at low temperatures (1.8–35 K) in a magnetic field of up to 70 kOe. The effect of positive magnetoresistance that obeys the Kohler’s rule Δρ/ρ = f(ρ(0, 300 K)H/ρ(0, T)) is observed for the nonmagnetic metal LuB12. In the magnetic dodecaborides HoB12, ErB12, and TmB12, three characteristic regimes of the magnetoresistance behavior have been revealed: the positive magnetoresistance effect similar to the case of LuB12 is observed at T > 25 K; in the range T N T ≤ 15 K, the magnetoresistance becomes negative and depends quadratically on the external magnetic field; and, finally, upon the transition to the antiferromagnetic phase (T < T N ), the positive magnetoresistance is again observed and its amplitude reaches 150% for HoB12. It has been shown that the observed anomalies of negative magnetoresistance in the paramagnetic phase can be explained within the Yosida model of conduction electron scattering by localized magnetic moments. The performed analysis confirms the formation of spin-polaron states in the 5d band in the vicinity of rare-earth ions in paramagnetic and magnetically ordered phases of RB12 and makes it possible to reveal a number of specific features in the transformation of the magnetic structure of the compounds under investigation.  相似文献   

4.
We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe2As2, BaFe2As2, and (Ba0.55K0.45)Fe2As2, by means of measurements of electrical resistivity (ρ) in the 1.8-300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe2As2 and BaFe2As2 (lightly doped with Sn) display structural phase transitions near 170 and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba0.55K0.45)Fe2As2 is superconducting for T<30 K. The effect of pressure on BaFe2As2 is to shift the onset of the crystallographic transformation down in temperature at the rate of ~−1.04 K/kbar, while shifting the whole ρ(T) curves downward, whereas its effect on superconducting (Ba0.55K0.45)Fe2As2 is to shift the onset of superconductivity to lower temperatures at the rate of ~−0.21 K/kbar. The effect of pressure on CaFe2As2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P<5 kbar. However, higher pressures bring about another phase transformation characterized by reduced-resistivity, and the suppression of superconductivity, confining superconductivity to a narrow pressure dome centered near 5 kbar. Upper critical field (Hc2) data in (Ba0.55K0.45)Fe2As2 and CaFe2As2 are discussed.  相似文献   

5.
The influence of hydrostatic pressure and of magnetic field strenght is presented for the low temperature antiferromagnetic ordering temperature (TN=2.3 K) of GdBa2Cu3O7-x. Data are presented for both superconducting and normal samples, the superconducting sample having a sharp 95 K transition and the oxygen-depleted normal sample being a semiconductor. For both systems the Néel temperatures, extrapolated to zero measuring field, are identical: TN = (2.33±0.03) K. The effect of pressure is to raise the transition temperature slightly for both samples, dTN/dP=+0.03 K/kbar for the superconducting sample and +0.04 K/kbar for the normal sample. The temperature dependence of the heat capacity made in several fixed external magnetic fields and the isothermal magnetization for T<TN provide a measure of the antiferromagnetic-paramagnetic phase boundary, which shows TN approaching T=0 K at about 2.5 T.  相似文献   

6.
The magnetocaloric properties of melt-spun Gd-B alloys were examined with the aim to explore their potential application as magnetic refrigerants near room temperature. A series of Gd100−xBx (x=0, 5, 10, 15, and 20 at%) alloys were prepared by melt spinning. With the decrease in Gd/B ratio, Curie temperature (TC) remains constant at ∼293 K, and saturation magnetization, at 275 K, decreases from ∼100 to ∼78 emu/g. Negligible magnetic hysteresis was observed in these alloys. The peak value of magnetic entropy change, (−ΔSM)max, decreased from ∼9.9 J/kg K (0-5 T) and ∼5.5 J/kg K (0-2 T) for melt-spun Gd to ∼7.7 J/kg K (0-5 T) and ∼4.0 J/kg K (0-2 T), respectively for melt-spun Gd85B15 and Gd80B20 alloys. Similarly, the refrigeration capacity (q) decreased monotonously from ∼430 J/kg (0-5 T) for melt-spun Gd to ∼330 J/kg (0-5 T) for melt-spun Gd80B20 alloy. The near room temperature magnetocaloric properties of melt-spun Gd100−xBx (0≤x≤20) alloys were found to be comparable to few first-order transition based magnetic refrigerants.  相似文献   

7.
Lattice parameters were determined for members of the system CoPxS2?x (0 ≤ x ≥ 1). A cubic region was observed for 0 ≤ x ≤ 0·5 and a tetragonal region for 0·5 < x ≤ 1. Magnetization and susceptibility measurements were made on the sample CoPxS2?x (0 ≤ x ≤ 0·5) from 4·2 to 500°K and to 9·5 kOe. The ferromagnetic Curie temperature decreased almost linearly with composition from a value of 122(1)°K for x = 0 to 23(1)°K at x = 0·3. The saturation magnetization passed through a maximum at 41·5(2) e.m.u./g at x = 0·05, increasing from 40·0(2) e.m.u./g for x = 0, and then decreased to below 15 e.m.u./g for x = 0·3. The paramagnetic data gave a P2eff/CO2+ that increased linearly with phosphorus substitution from 4·4(2)μB at x = 0 to 5·5(2)μB2 at x = 0·5. The Weiss constant decreased almost linearly from 150(3)°K for x = 0 to 85(2)°K for x = 0·3. The magnetic properties of this system are compared with those of the system CoAsxS2?x and CoSexS2?x. Changes, with composition, in the Curie and Weiss temperatures are almost identical in the three systems for x ≤ 0·25. As with CoAsxS2?x the ferromagnetic moment reaches a maximum at x = 0·05 and then decreases with increasing x, although the magnetic interactions remain ferromagnetic for all x ≤ 0·5.  相似文献   

8.
ZFSR experiments on CeSb and DySb reveal fast spin dynamics even in their magnetically ordered states below 16.2 and 9.5 K, respectively. Above these first order transitions both pnictides exhibit strong frequency shifts in TF pointing to some magnetic precursors. The signals below T N show spontaneous rotating contributions. For CeSb several commensurately modulated antiferromagnetic phases containing paramagnetic sheets are confirmed. For DySb our data favor a CoO type structure in contrast to the MnO structure proposed from neutron diffraction.Part of this work was funded by the German Federal Minister for Research and Technology (BMFT) under contracts No 03-LI3-BRA and 03-KA2-TUM-4.  相似文献   

9.
Nuclear spin-lattice relaxation times (T1) for protons in the intercalation complex TaS2:NH3 have been measured as a function of temperature (27 ≤ T ≤ 300 K) and pressure (0 ≤ P ≤ 4 kbar). Dipolar fluctuations associated with translation and reorientation of the NH3 molecules are the dominant T1 mechanism for T > 100 K. A one parameter diffusion model analysis yields an activation energy (E) of 0.13 eV for these motions. The rate of change of E with pressure is estimated at dlnE/dP = 2.3%/kbar, much larger than expected from the compressibility of most solids. A sign reversal of dT1/dP occurs at temperatures near the T1 minimum, observable in the present case because of the large pressure response of these materials.  相似文献   

10.
Polycrystalline samples of a new rare-earth series RPd5Al2 crystallizing in the tetragonal ZrNi2Al5-type structure have been prepared. Their physical properties by electrical resistivity ρ, magnetic susceptibility χ, magnetization M and specific heat Cp measurements are reported. The ingots are composed of elongated grains preferentially aligned in the c direction; therefore, measurements were conducted parallel and perpendicular to the grains. Antiferromagnetic ordering appears in R=Ce, Nd, Gd, and Sm at low temperatures. CePd5Al2 has two AFM transitions at 4.1 and 2.9 K and ρ(T) indicates a Kondo metal behavior with large anisotropy. In PrPd5Al2 no magnetic transition was observed down to 0.4 K. The Cp(T) shows a broad peak around 13 K due to the CEF effect, suggesting a non-magnetic singlet ground state. In NdPd5Al2, χ(T) shows anisotropy and the Cp(T) shows a sharp peak at 1.2 K. The magnetic entropy at 3 K is very close to Rln2, indicating a Kramers doublet ground state. In SmPd5Al2, Cp(T) shows a magnetic transition at 1.7 K. Cp(T) for GdPd5Al2 shows a peak at 6 K, followed by a broad anomaly around 3 K. Within this series, TN's for CePd5Al2 and NdPd5Al2 clearly deviate from the relation predicted by de Gennes scaling, which is ascribed to the CEF effect.  相似文献   

11.
New antiferromagnetic semiconductor compounds TmxMn1–xS (0 ≤ x ≤ 0.15) with an NaCl-type FCC lattice are synthesized, and their structural, magnetic, and electrical properties are investigated at temperatures of 80–1100 K in magnetic fields of up to 10 kOe. Anomalies in the temperature dependence of resistivity in the region of magnetic transition are observed. The activation energy of the synthesized compounds is found and shown to grow along with the concentration of a substitute.  相似文献   

12.
The piezo-optic behavior of forsterite, crystallizing in the orthorhombic system, has been investigated up to a maximum pressure of 7 kbars. It is found that the variation of the refractive indices with pressure, dn/dP, are 0·035×10−3/kbar, 0·046×10−3/kbar, and 0·063×10−3/kbar for the nα, nβ, and nγ respectively. These values are the lowest on record. The corresponding values for the variation of the refractive indices with volume strain are 0·044, 0·059 and 0·080 respectively. These results are interpreted in terms of the bonding and coordination number of the oxygen ions.  相似文献   

13.
The results of experimental investigation of the chemical phase composition, crystal structure, and magnetic properties of the manganite La0.70Sr0.30MnO3?γ (0 ≤ γ ≤ 0.25) with perovskite structure depending on the concentration of oxygen vacancies are presented. It is found that the mean grain size of the stoichiometric solid solution of La0.70Sr0.30MnO3 amounts approximately to 10 μm, while the grain size for anion-deficient solid solutions of La0.70Sr0.30MnO3?γ is approximately 5 μm. It is found that samples with 0 ≤ γ ≤ 0.13 have a rhombohedral unit cell (with space group \(R\bar 3c\), Z = 2), while samples with γ ≥ 0.20 have a tetragonal unit cell (space group I4/mcm, Z = 2). It is proved experimentally that the magnetic phase state of the manganite La0.70Sr0.30MnO3?γ changes upon a decrease in the oxygen content. It is shown that anion-deficient solid solutions of La0.70Sr0.30MnO3?γ experience a number of successive magnetic phase transformations in the ground state from a ferromagnet (0 ≤ γ ≤ 0.05) to a charge-disordered antiferromagnet (γ = 0.25) via an inhomogeneous magnetic state similar to a cluster spin glass (0.13 ≤ γ ≤ 0.20). The mean size of ferromagnetic clusters (r ≈ 50 nm) in the spin glass state is estimated. It is shown that oxygen vacancies make a substantial contribution to the formation of magnetic properties of manganites. The generalized magnetic characteristics are presented in the form of concentration dependences of the spontaneous magnetic moment, coercive force, and the critical temperature of the magnetic transition. The most probable mechanism of formation of the magnetic phase state in Sr-substituted anion-deficient manganites is considered. It is assumed that in the absence of orbital ordering, a decrease in the magnetic ion coordination number leads to sign reversal in indirect superexchange interactions Mn3+-O-Mn3+.  相似文献   

14.
The systematic investigation of the magnetic susceptibility of the CMR manganites Pr1?x Ca x MnO3 versus temperature has been performed for 0.25 ≤ x ≤ 0.50. Due to the similar size of calcium and praseodymium, these results show the important role of the mixed valence of manganese upon the complex magnetic behaviour of these compounds. They demonstrate that the appearance of antiferromagnetism coincides with charge ordering, T N = T CO varying with x, from 250K for x = 0.50 to 225K for x = 0.35. A strong competition between ferromagnetism and antiferromagnetism is observed for 0.35 ≤ x < temperature (T > 170 K) and going through canted antiferromagnetic or weak ferromagnetic states for intermediate temperatures (70 K < T < 170 K). For 0.25 ≤ x ≤ 0.30, a strong ferromagnetic state is observed for 95 K ≤ T ≤ 150 K, with a transition to a spin glass like state below 95–110 K.  相似文献   

15.
The effect of pressure on magnetic properties of YCo12B6 and CeCo12B6 was studied in temperature range 5–300 K at pressures up to 9 kbar. The Curie temperature TC and spontaneous magnetization MS decrease with pressure for both compounds. The decrease can be attributed mostly to the volume dependence of both, the Co magnetic moment and the exchange interactions. The hybridization of the p–d states as a consequence of small distances between the Co and B atoms can be one reason of the relatively low pressure effects (ΔTCp=?0.39±0.02 K/kbar, d ln MS/dp=?0.0013±0.0002 kbar?1) in YCo12B6. Higher volume sensitivity of magnetic properties of CeCo12B6 in comparison with YCo12B6 can be attributed to the pressure induced changes of the Ce f- and Co d-states.  相似文献   

16.
The magnetic and electrical properties of polycrystalline Pr1?xAxCoO3 cobaltites with A=Ca, Sr and 0≤x≤0.5 were studied in the temperature range 4 K≤T≤1000 K and field up to 7 T. The X-ray analyses show the presence of only one phase having monoclinic or orthorhombic symmetry. The magnetic measurements indicate that the Ca-doped samples have at low temperatures, similar properties to the frustrated magnetic materials. PrCoO3 is a paramagnetic insulator in the range from 4 to 1000 K. The Sr-doped cobaltites exhibit two phase transitions: a paramagnetic–ferromagnetic (or magnetic phase separated state) phase transition at about 240 K and a second one at about 100 K. The magnetic measurements suggest the presence of magnetic clusters and a change in the nature of magnetic coupling between Co ions at low temperatures. A semiconducting type behavior and high negative magnetoresistance was found for the Ca-doped samples, while the Sr-doped ones were metallic and with negligible magnetoresistance. The results are analyzed in the frame of a phase separation scenario in the presence of the spin-state transitions of Co ions.  相似文献   

17.
We present a detail study of the effect of excess metal atoms on the magnetic properties of Cu1+xCr2+yTe4 at 2-400 K. With the increase in x=0-1 and y<0.3, these compounds retain metallic behavior, while ferromagnetic ordering temperature reduces from 325 to 160 K. Our low field susceptibility χac measurements reveal a second transition on cooling below the ferromagnetic ordering; the transition at around 160-180 K intensifies with the excess amount of copper and chromium atoms. The value of spontaneous magnetization at 2 K remains between 2.6 and 2.9μB across all the compositions and it reduces with temperature as M(T)∼A0T3/2+A1T5/2, as expected for the excitation of Bloch's spin waves in a model of the Heisenberg ferromagnet. Our terminal composition Cu1.9Cr2.25Te4 showed only second transition at 160 K with short range magnetic order much above the transition temperature and in the absence of the specific heat jump at this temperature. The magnetic properties are explained as a result of random magnetic anisotropy in the excess-metal compositions induced by the interstitial atomic defects in their parent spinel structure. The large stuffing of cations has been made possible in the telluride compounds because of the large size of tellurium and also by the covalent bonding that stabilizes the defect structure.  相似文献   

18.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

19.
Tb0.75Y0.25Co3B2 was studied as a function of temperature by neutron powder diffraction, ac susceptibility and SQUID magnetization measurements. The solid solution, which is of hexagonal symmetry and is paramagnetic at 300 K, undergoes a magnetic Co–Co ordering transition at ∼150 K, and a second magnetic Tb–Tb ordering transition at ∼17 K. The latter induces a spin-reorientation transition, in which the magnetic axis rotates from the c-axis toward the basal plane. The component of the magnetic axis, which is perpendicular to c, leads to a crystal symmetry reduction from hexagonal to monoclinic. The observed magnitude of the magnetic moment of the Tb ion is 1.5 μB, unusually small relative to the free ion and parent compound (TbCo3B2) values. These magnetic and crystal properties are discussed and compared with what was previously published for the parent compound.  相似文献   

20.
A systematic study of the structural, magnetic and electrical properties of the manganites Pr1-x Sr x MnO3(0≤ x ≤ 0.5) has been carried out. X-ray diffraction investigation shows a structural change with composition, from orthorhombic (0 ≤ x ≤ 0.2) to rhombohedral (0.25 ≤ x ≤ 0.5). The magnetic properties of Pr1-x Sr x MnO3 samples could be explained on the basis of a double exchange mechanism between pairs of Mn3+ and Mn4+ ions. These properties are strongly dependent on the ratio of Mn3+/Mn4+. The maximum of the ferromagnetic transition temperature Tc is reached at x ≈ 0.35 corresponding to a value 1.85 of this ratio. The investigation of the electrical properties shows a semiconductor to metal transition as a function of temperature (0.25≤x≤0.4) with a metallic-like behaviour above a critical temperature Tp . A semiconducting-like one is observed for all the range of temperature (50–300 K) for (0 ≤ x ≤ 0.2 and x = 0.5). The evolution of activated energies with the carrier concentration has been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号