首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We fabricated high-mobility field-effect transistors based on epitaxial graphene synthesized by vacuum graphitization of both the Si- and C-faces of SiC. Room-temperature field-effect mobilities >4000 cm2/V s for both electrons and holes were achieved, although with wide distributions. By using a high-k gate dielectric, we were able to measure the transistor characteristics in a wide carrier density range, where the mobility is seen to decrease as the carrier density increases. We formulate a simple semiclassical model of electrical transport in graphene, and explain the sublinear dependence of conductivity on carrier density from the view point of the few-layer graphene energy band structure. Our analysis reveals important differences between the few-layer graphene energy dispersions on the SiC Si- and C-faces, providing the first evidence based on electrical device characteristics for the theoretically proposed energy dispersion difference between graphene synthesized on these two faces of SiC.  相似文献   

3.
Cu7PSe6 is a mixed conductor exhibiting structural phase transitions above and below room temperature that are accompanied by step-like changes in electrical conductivity. The substitution of S2− for Se2− in Cu7PSe6 significantly enhances electrical conductivity at room temperature compared to that observed for the pure compound. In the case of Cu7P(Se0.80S0.20)6, a nearly temperature-independent electrical conductivity exceeds 1 S/cm with no evidence of any phase transitions throughout the temperature interval 200-400 K. However, the ionic contribution accounts for just 2% of the total electrical conductivity in this solid solution at room temperature.  相似文献   

4.
Electrical impedance measurements of Na3H(SO4)2 were performed as a function of both temperature and frequency. The electrical conductivity and dielectric relaxation have been evaluated. The temperature dependence of electrical conductivity reveals that the sample crystals transformed to the fast ionic state in the high temperature phase. The dynamical disordering of hydrogen and sodium atoms and the orientation of SO4 tetrahedra results in fast ionic conductivity. In addition to the proton conduction, the possibility of a Na+ contribution to the conductivity in the high temperature phase is proposed. The frequency dependence of AC conductivity is proportional to ωs. The value of the exponent, s, lies between 0.85 and 0.46 in the room temperature phase, whereas it remains almost constant, 0.6, in the high-temperature phase. The dielectric dispersion is examined using the modulus formalism. An Arrhenius-type behavior is observed when the crystal undergoes the structural phase transition.  相似文献   

5.
考虑到空位缺陷的存在和原子非简谐振动,以铜、镍基外延石墨烯为例, 研究了金属基外延石墨烯空位缺陷浓度和态密度以及电导率随温度的变化规律,探讨了空位缺陷的影响。结果表明:(1) 空位缺陷浓度随温度升高而非线性增大,外延石墨烯的空位缺陷浓度及其随温度的变化率均大于石墨烯; (2) 与石墨烯相同,金属基外延石墨烯的态密度变化曲线对电子能量为0为对称,但空位缺陷的存在使态密度在电子能量为零时的值不为零,空位缺陷对导带态密度的影响大于价带;态密度随空位缺陷浓度的增大而线性减小,但减小幅度不大,而温度对石墨烯态密度几乎无影响;(3)金属基外延石墨烯的电导率近似等于电子声子相互作用贡献的电导率,并随温度升高而非线性减小;空位缺陷的存在使电导率有所减小,但只在较高温度下才明显。原子非简谐振动情况的电导率稍大于简谐近似的电导率,温度愈高,两者电导率的差愈大,即非简谐效应愈显著。  相似文献   

6.
This work reports the gas/solid equilibration kinetics for the O2/CaTiO3 system. The electrical conductivity measurement was applied for monitoring the kinetics in the ranges of temperature 973-1323 K and oxygen partial pressure 10 Pa-72 kPa. It was found that the gas/solid equilibration kinetics for the polycrystalline CaTiO3 specimen in the above experimental conditions is determined by bulk diffusion rather than by grain boundary conditions. The obtained data of the electrical conductivity vs. time were used for the determination of the chemical diffusion coefficient as a function of temperature at low and high p(O2), respectively:
(1)  相似文献   

7.
Electrical conductivity of molybdenum disulphide was studied in a helium-sulphur gas mixture as a function of temperature (1073-1273 K). It was found that over the whole temperature and sulphur pressure range (10-6600 Pa) studied, the material exhibits p-type conductivity. Based on literature intrinsic electronic disorder data as well as measured electrical conductivity results a defect model has been proposed. This model involves electron holes and doubly ionized interstitial sulphur ions as majority point defects as well as electrons and acceptor-type foreign ions as minority defects.  相似文献   

8.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

9.
The triatomic and tetratomic gas molecule adsorption effects on the electrical conductivity of graphene are investigated by the tight-binding model, Green's function method, and coherent potential approximation. We find that the electrical conductivity of graphene sheet is sensitive to the adsorption of these gases.  相似文献   

10.
The temperature dependence of electrical conductivity and magnetoconductivity of new type of carbon films composed of nanosize thin graphite-like crystallites were investigated at temperature interval of 4.2-300 K and in the magnetic field range of 0-12 kG at 4.2 K, respectively. The crystallites consist of several (5-50) graphene layers which have predominant orientation perpendicularly to a film surface. At temperature ≤30 K the logarithmic conductivity decreases linearly with temperature. The positive magnetoconductivity of the films was observed in a magnetic field directed perpendicularly to the film surface in all intervals of field values. In magnetic field B≥4 kG the logarithmic asymptotic of conductivity from magnetic field was observed. That is characteristic of the systems with two-dimensional quantum corrections to magnetoconductivity. In a magnetic field directed along a film surface, the crossover from negative to positive magnetoresistivity is observed at B≥8 kG.  相似文献   

11.
It investigated the effects of orderly substituted atoms on density of states, electronic heat capacity and electrical conductivity of graphene plane within tight-binding Hamiltonian model and Green's function method. The results reveal a band gap in the density of states, leading to an acceptor or donor semiconductor. In the presence of foreign atoms, the heat capacity decreases (increases) before (after) the Schottky anomaly. Moreover, the electrical conductivity of the gapped graphene reduces on all ranges of temperature compared to the pristine case. Deductively, all changes in the electronic properties depend on the difference between the on-site energies of the carbon and replaced atoms.  相似文献   

12.
S. Das Sarma  Kun Yang   《Solid State Communications》2009,149(37-38):1502-1506
We apply Laughlin’s gauge argument to analyze the ν=0 quantum Hall effect observed in graphene when the Fermi energy lies near the Dirac point, and conclude that this necessarily leads to divergent bulk longitudinal resistivity in the zero temperature thermodynamic limit. We further predict that in a Corbino geometry measurement, where edge transport and other mesoscopic effects are unimportant, one should find the longitudinal conductivity vanishing in all graphene samples which have an underlying ν=0 quantized Hall effect. We argue that this ν=0 graphene quantum Hall state is qualitatively similar to the high field insulating phase (also known as the Hall insulator) in the lowest Landau level of ordinary semiconductor two-dimensional electron systems. We establish the necessity of having a high magnetic field and high mobility samples for the observation of the divergent resistivity as arising from the existence of disorder-induced density inhomogeneity at the graphene Dirac point.  相似文献   

13.
In the present study, reduced graphene-oxide (r-GO) papers were prepared by vacuum filtration method using chemically obtained graphene oxide as raw materials. Different reduction methods, chemical, thermal or the combination were designed to investigate the influence of reduction process on the structure and conductivity of r-GO papers. The reducibility of the obtained papers was investigated by XPS and Raman. The structure, morphology and electrical conductivity were examined by XRD, SEM and four point resistivity test system, respectively. Results showed that chemical reduction using hydrazine or annealing in reducing ambinent alone was not sufficient to achieve maximum reduction, the highest C/O ratio and highest conductivity was obtained in paper reduced via a combination of hydrazine and thermal annealing treatment. In order to further improve the conductivity of the paper, Ag nanoparticles have been decorated into the paper.  相似文献   

14.
Ternary-phase ceramic system of Li2O Al2O3 4SiO2 doped with CuO, FeO and TiO2 has been prepared and subjected to dc electrical conductivity and thermally stimulated depolarization current (TSDC) measurements as a function of temperature (30-250 °C) and field strength. The electrical conductivity results are explained by assuming both ionic and electronic conduction mechanisms coexist with different contributions over the whole temperature range of experiments. TSDC spectra have been found to be characterized by a broad intense relaxation peak, which can be attributed to an ionic charge polarization. The broad relaxation transitions are apparently a result of the nonuniform nature of this process. Activation energies are calculated for both dc electrical conductivity and TSDC according to Arrhenius equation and initial rise method, respectively.  相似文献   

15.
At pressure 1.0-4.0 GPa and temperature 1073-1423 K and under the control of oxygen fugacity (Mo+MoO2, Fe+FeO and Ni+NiO), a YJ-3000t multi-anvil solid high-temperature and high-pressure apparatus and Solartron-1260 impedance/Gain-Phase analyzer were employed to analyze the electrical conductivity of lherzolite. The experimental results showed that: (1) within the range of the selected frequencies (103-106 Hz), either as viewed from the relationship between the real or imaginary part of complex impedance and the frequency, or from the relationship between modulus, phase angle and frequency, it can be seen clearly that the complex impedance has a strong dependence on frequency; (2) with the rise of temperature (T), the electrical conductivity (σ) increased, and Lg σ and 1/T follows the Arrhenius relationship; (3) with the rise of pressure, the electrical conductivity decreased, and activation enthalpy and temperature-independent pre-exponential factor decreased as well. And the activation energy and activation bulk volume of the main charge carrier in the lherzolite have been obtained for the first time, which are 1.68±0.02 eV and 0.04±0.01 cm3/mol, respectively; (4) under the given pressure and temperature, the electrical conductivity tends to increase with increasing oxygen fugacity, and under the given pressure, the activation enthalpy and pre-exponential factor tend to decrease with the rise of oxygen fugacity; (5) at 2.0 GPa and the control of the three solid buffers, Mo+MoO2, Fe+FeO and Ni+NiO, the exponential factors of electrical conductivity variation range with oxygen fugacity are , and the theoretical model for the relationship between the electrical conductivity of lherzolite and the oxygen fugacity under high pressure has been established for the first time; (6) the electrical conduction mechanism of small polarons provides a reasonable explanation to the variation of conductivity of lherzolite with oxygen fugacity.  相似文献   

16.
Silver nanoparticles embedded in a dielectric matrix are investigated for their potential as broadband-absorbing optical sensor materials. This contribution focuses on the electrical properties of silver nanoparticles on glass substrates at various morphological stages. The electrical current through thin films, consisting of silver nanoparticles, was characterized as a function of film thickness. Three distinct conductivity zones were observed. Two relatively flat zones (“dielectric” for very thin films and “metallic” for films thicker than 300-400 Å) are separated by a sharp transition zone where percolation dominates. The dielectric zone is characterized by isolated particle islands with the electrical conduction dominated by a thermally activated tunneling process. The transition zone is dominated by interconnected silver nanoclusters—a small increase of the film thickness results in a large increase of the electrical conductivity. The metallic conductivity zone dominates for thicknesses above 300-400 Å.  相似文献   

17.
《Current Applied Physics》2015,15(10):1205-1215
Calculations of renormalized perpendicular conductivity within Kubo formula employing single particle temperature dependent Green's function formalism for bilayer graphene has been attempted. On the basis of numerical analysis, perpendicular conductivity as a function of temperature, interlayer coupling, onsite Coulomb interaction and carrier concentration per site has been analyzed for both AA- and AB-stacked bilayer graphene. It is found that perpendicular conductivity increases with interlayer coupling and also with temperature at low temperatures while at higher temperatures, there is saturation in perpendicular conductivity. Influences of onsite Coulomb interaction and carrier concentration per site on perpendicular conductivity is just opposite to each other while onsite Coulomb energy suppresses the rate of increase of σ/σ⊥0 with temperature, on the other hand increase in carrier density per site enhance this rate significantly. Finally, theoretically obtained results on temperature dependent perpendicular conductivity are viewed in terms of electronic transport data as well as recent theoretical works available in bilayer graphene.  相似文献   

18.
Normal state electrical and thermal properties, including electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) of the CaAlxSi2−x (x=0.9-1.2) system were investigated. It is found that the electrical resistivity and Seebeck coefficient exhibit a typical metallic character throughout the temperature range investigated, and the metallicity of this series is enhanced with increase in Al/Si ratio. On the other hand, the thermal conductivity shows a weak temperature variation at low temperatures, whereas κ follows a T2-dependence for T>150 K. Analysis of the electronic thermal resistivity based on Klemen’s model reveals that the scattering of electrons from the defects and static imperfections becomes dominant as the temperature approaches Tc. These results are discussed in the light of simultaneous existence of various crystal structures and development of ultra-soft phonon mode recently observed in the CaAlSi system.  相似文献   

19.
Polycrystalline sample with (Na0.5Bi0.5)ZrO3 (NBZ) stoichiometry was prepared using a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analyses indicate the formation of a single-phase perovskite-type orthorhombic structure. AC impedance plot is used as tool to analyse the electrical behaviour of the sample as a function of temperature at different frequency. The AC impedance studies revealed the presence of grain boundary effect and evidence of a negative temperature coefficient of resistance (NTCR) character. Pseudo Cole-Cole and complex electric modulus analyses indicated non-Debye-type dielectric relaxation. The AC conductivity obeys the universal power law. The pair approximation type correlated barrier hopping (CBH) model explains the universal behaviour of the s exponent. The apparent activation energy to the conduction process and minimum hopping distance are discussed.  相似文献   

20.
Multi-walled carbon nanotubes (MWCNTs) were treated with a radio-frequency discharge. We found that MWCNTs showed opposite trends in electrical conductivity when treated with oxygen and hydrogen plasmas. MWCNTs showed enhanced electrical conductivity when placed at cathode with oxygen plasma treatment, whereas MWCNTs treated at positive column did not show such a trend. In contrast, the conductivity of MWCNTs dropped sharply with hydrogen plasma treatment. The measured conductivity trends of MWCNTs are correlated with observed Raman spectral shift. The possible mechanisms of the change in electrical conductivity in plasma-treated MWCNTs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号