首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title salt, [Zn(C2N2H8)3]2[CdI4]I2, conventionally abbreviated [Zn(en)3]2[CdI4]I2, where en is ethyl­enediamine, contains discrete [Zn(en)3]2+ cations and [CdI4]2− anions with distorted octa­hedral and nearly tetra­hedral geometries, respectively, as well as uncoordinated I ions. The cation and the free I anion lie on twofold rotation axes and the [CdI4]2− anion lies on a axis in the space group I2d. The structure exhibits numerous weak inter‐ionic hydrogen bonds of two types, viz. N—H⋯I(free ion) and N—H⋯I([CdI4]2−), which support the resulting three‐dimensional framework.  相似文献   

2.
In sodium hexa­amminecobalt(III) tetra­kis­(4‐fluoro­benzoate) monohydrate, Na[Co(NH3)6](C7H4FO2)4·H2O, determined at 180 K, [Co(NH3)6]3+ cations lie on centres of inversion and form layers in which their C4 axes lie perpendicular to the layer planes. 4‐Fluoro­benzoate anions lie on twofold axes and general positions and adopt near‐planar geometries. Na+ cations and water mol­ecules lie on twofold axes, forming [NaO5] square pyramids that lie between the [Co(NH3)6]3+ cations. The second‐sphere inter­actions between [Co(NH3)6]3+ cations and 4‐fluorobenzoate anions comprise edge‐to‐face and vertex‐to‐face arrangements. The structure is closely comparable with that of the benzoic acid salt, demonstrating that fluorination of the anion in the para position has no significant influence on the second‐sphere inter­actions and minimal influence on the gross crystal structure.  相似文献   

3.
The title compound, bis[di­aqua­bis­(ethyl­enedi­amine‐κ2N,N′)copper(II)­] hexa­cyano­iron(II) tetrahydrate, [Cu(C2H8N2)2(H2O)1.935]2[Fe(CN)6]·4H2O, was crystallized from an aqueous reaction mixture initially containing CuSO4, K3[Fe(CN)6] and ethyl­enedi­amine (en) in a 3:2:6 molar ratio. Its structure is ionic and is built up of two crystallographically different cations, viz. [Cu(en)2(H2O)2]2+ and [Cu(en)2(H2O)1.87]2+, there being a deficiency of aqua ligands in the latter, [Fe(CN)6]4− anions and disordered solvent water mol­ecules. All the metal atoms lie on centres of inversion. The Cu atom is octahedrally coordinated by two chelate‐bonded en mol­ecules [mean Cu—N = 2.016 (2) Å] in the equatorial plane, and by axial aqua ligands, showing very long distances due to the Jahn–Teller effect [mean Cu—O = 2.611 (2) Å]. In one of the cations, significant underoccupation of the O‐atom site is observed, correlated with the appearance of a non‐coordinated water mol­ecule. This is interpreted as the partial contribution of a hydrate isomer. The [Fe(CN)6]4− anions form quite regular octahedra, with a mean Fe—C distance of 1.913 (2) Å. The dominant intermolecular interactions are cation–anion O—H⋯N hydrogen bonds and these inter­actions form layers parallel to (001).  相似文献   

4.
The title compound, tris­[(R)‐2‐hydroxy­propan­amide‐κ2O,O′]­zinc(II) tetra­bromo­zincate, [Zn(C3H7NO2)3][ZnBr4], contains one monomeric six‐coordinate zinc complex cation and one tetrahedral [ZnBr4]2− anion. Both ZnII atoms lie on threefold axes. Coordination in the cation occurs via the amide and hydroxy O atoms [Zn—O = 2.074 (5) and 2.073 (6) Å] and has a distorted octahedral geometry, with cis‐O—Zn—O angles in the range 76.2 (2)–109.2 (2)°. In the crystal structure, the cations and anions are linked by N—H⋯Br and O—H⋯O hydrogen bonds, generating a three‐dimensional network.  相似文献   

5.
In the title compound, [Co(C2H8N2)3]2[Ru2(C2H4O7P2)2Cl2]Cl·3H2O, the building unit contains two crystallographically independent dinuclear [Ru2(hedp)2Cl2]5− anions, where hedp [viz. (1‐hydroxy­ethyl­idene)­di­phospho­nate] serves as a bis‐chelating bridging ligand, two types of [Co(en)3]3+ cations, one uncoordinated Cl anion and five water mol­ecules of crystallization. The [Ru2(hedp)2Cl2]5− anions are connected to one another, forming one‐dimensional chains along the a axis. The [Co(en)3]3+ cations are located between these chains and lie across inversion centres. An extensive series of hydrogen bonds lead to the formation of a three‐dimensional supramol­ecular network structure, with channels generated along the [100] direction. The uncoordinated water mol­ecules and Cl anions reside in these channels.  相似文献   

6.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

7.
Yellow crystals of [Ni(deta)2]3[SbS4]2 (deta is diethyl­enetri­amine, C4H13N3) were synthesized under solvothermal conditions by reacting elemental Ni, Sb and S in a solution of diethyl­enetri­amine. The structure is composed of tetrahedral [SbS4]3− anions in general positions and octahedral [Ni(deta)2]2+ cations located at centres of inversion. In the crystal structure, the anions and cations are stacked in the direction of the a axis in a pseudo-hexagonal arrangement.  相似文献   

8.
The title compound, tetra­ethyl­ammonium dodeca‐μ‐cyano‐hexa­cyano­tetrakis­(ethyl­ene­di­amine)­tetra­cadmium(II)­tri­fer­rate(III), (C8H20N)[Cd4Fe3(CN)18(C2H8N2)4], was pre­pared from a reaction mixture containing CdCl2, K3[Fe(CN)6], ethyl­ene­di­amine (en) and [Et4N]Br in a 1:1:3:1 molar ratio. The crystal structure consists of a negatively charged three‐dimensional framework of {[Cd(en)]4[Fe(CN)6]3} anions, with [Et4N]+ cations located in the cavities of the framework. The Cd atom is octahedrally coordinated by one disordered chelating en mol­ecule [mean Cd—N = 2.35 (3) Å] and four N‐­bonded bridging cyano groups [Cd—N distances are in the range 2.283 (2)–2.441 (2) Å]. There are two crystallographically independent [Fe(CN)6]3− anions in the structure and in each the Fe atom lies on a twofold axis. In the first [mean Fe—C = 1.941 (5) Å], all the cyano groups are bridging ligands, while in the second [mean Fe—C = 1.945 (2) Å], there are two terminal cyano ligands in trans positions. The Cd—N—C angles range from 128.6 (2) to 172.8 (2)°.  相似文献   

9.
The title compound, [Ni(C2H8N2)3][Ni(C3HN3O2)2]·H2O, appears to be a modular associate consisting of two complex counter‐ions, containing bivalent nickel as the central atom in both cases, and a solvent water mol­ecule. The NiII ion in the complex cation lies on the C2 crystallographic axis. Its coordination environment is formed by six N atoms of three ethyl­ene­diamine (en) mol­ecules, representing a distorted octa­hedral geometry. The NiII ion in the complex anion occupies a position at the center of inversion. It exhibits a distorted square‐planar coordination geometry formed by four N atoms belonging to the deprotonated oxidoimine and amide groups of the two doubly charged 2‐cyano‐2‐(oxidoimino)acetamidate anions, situated in trans positions with respect to each other. In the crystal packing, the complex anions are linked by water mol­ecules via hydrogen bonds between the amide O atoms and water H atoms, forming chains translated along the a direction. The [Ni(en)3]2+ cations fill empty spaces between the translational chains, connecting them by hydrogen bonds between the oxime and amide O atoms of the anions and the amine H atoms of the cations, forming layers along the ac plane. The water mol­ecules provide connection between layers through N atoms of the cations, thus forming a three‐dimensional modular structure.  相似文献   

10.
The crystal structure of the title compound, [Zn(C5H5NS)4](NO3)2, consists of a [Zn(C5H5NS)4]2+ (C5H5NS is pyridinium‐2‐thiol­ate) cation and two nitrate anions. The central ZnII atom lies at a site with imposed symmetry and is surrounded by four S atoms [Zn—S = 2.3371 (5) Å] from four symmetrical pyridinium‐2‐thiol­ate ligands in a distorted tetrahedral geometry. There are N—H⋯O hydrogen‐bonding interactions between the pyridinium‐2‐thiol­ate ligands and nitrate O atoms. In addition, π–π interactions via aromatic N‐containing ligands are discussed.  相似文献   

11.
Partial reduction of the CuII ions in the aqueous system CuII–en–[Ni(CN)4]2? (1/1/1) (en is 1,2‐di­amino­ethane) yields a novel heterobimetallic mixed‐valence compound, poly­[[aqua­bis(1,2‐di­amino­ethane)copper(II)] [hexa‐μ‐cyano‐tetra­cyano­bis(1,2‐di­amino­ethane)­tricopper(I,II)­dinickel(II)] dihydrate], [Cu(C2H8N2)2(H2O)][Ni2Cu3(CN)10(C2H8N2)2]·2H2O or [Cu(en)2(H2O)][Cu(en)2Ni2Cu2(CN)10]·2H2O. The structure is formed by a negatively charged two‐dimensional array of the cyano complex [Cu(en)2Ni2Cu2(CN)10]n2n?, [Cu(en)2(H2O)]2+ complex cations and water mol­ecules of crystallization. These last are involved in a complicated hydrogen‐bonding system. The cyano groups act as terminal, μ2‐bridging or μ3‐bridging ligands.  相似文献   

12.
The asymmetric unit of the three‐dimensional CuII–WIV polymeric assembly {[Cu(en)2][Cu(en)][W(CN)8]·4H2O}n (en is ethyl­enedi­amine, C2H8N2) or {[Cu2W(CN)8(C2H8N2)3]·4H2O}n, which can be named as polymeric bis­(ethyl­enedi­amine)copper(II) (ethyl­enedi­amine)copper(II) octa­cyano­tungstate(IV) tetrahydrate or penta‐μ‐cyano‐tri­cyano­tris­(ethyl­enedi­amine)­dicopper(II)­tungsten(IV) tetra­hydrate, consists of two half [Cu(en)2]2+ cations (Cu2+ on inversion centres), a [Cu(en)]2+ cation and a [W(CN)8]4? ion, together with four water mol­ecules. The latter CuII site is coordinated by five N atoms from an en ligand and by three cyanides in a distorted square‐pyramidal geometry. The CuII atoms of the two [Cu(en)2]2+ cations reside in an elongated octahedral coordination environment, and one of them is localized at a centre of inversion. The W atom is coordinated by eight cyano groups in an irregular square antiprism. Five of these act as bridging units connecting the W and the three Cu atoms, to form an infinite three‐dimensional porous network containing a zigzag ladder structure.  相似文献   

13.
通过水热合成技术,一个新颖的基于Zn配合物修饰的Keggin型钴钨酸的有机-无机杂化化合物:[Zn(2,2’-bipy)3]3{[Zn(2,2’-bipy)2(H2O)]2 [HCoW12O40] 2 }.H2O已经被合成,化合物通过红外光谱、热重分析和单晶X-射线衍射进行了表征。单晶X-射线衍射的结果显示标题化合物是由一个单支撑的{[Zn(2,2’-bipy)2(H2O)]2 [HCoW12O40] 2}6-多阴离子,三个[Zn(2,2’-bipy)3]2+阳离子和一个水分子构成。有趣的是[Zn(1)(2,2’-bipy)3]2+阳离子通过氢键连接在一起形成螺旋链。另外标题化合物在空气中是稳定的,并且在室温下显示了强的荧光。  相似文献   

14.
The reaction of Ph3SnCl, (R4N)2[Mo6O19] and (R4N)OH in a molar ratio of 6:1:10 leads to the formation of (R4N)[(Ph3Sn)MoO4] (R = nPr ( 1 ), nBu ( 2 )). Compounds 1· CH3CN and 2 have been charactarized by IR spectroscopy and single crystal X‐ray diffraction. 1· CH3CN forms orthorhombic crystals, space group P212121 with a = 1339.9(2), b = 1508.9(2), c = 1733.2(3) pm. 2 crystallizes in the monoclinic space group P21 with a = 1342.6(2), b = 2280.3(4), c = 1344.0(2) pm, β = 118.34(1). Both compounds 1 and 2 consist of isolated R4N+ cations and polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains with an alternating arrangement of Ph3Sn+ and MoO42– groups. Treatment of (Ph3Sn)2MoO4 with bis(ethylenediamine)copper(II) succinate yields [Cu(en)2(Ph3Sn)2(MoO4)2] ( 3 ). The zinc derivative [Zn(en)2(Ph3Sn)2(MoO4)2] ( 4 ) is obtained similarly by reaction of (Ph3Sn)2MoO4 with bis(ethylenediamine)zinc(II) formiate. Compounds 3· 2DMF · EtOH and 4· 2DMF · EtOH crystallize in the monoclinic space group P21/n with a = 1998.0(2), b = 1313.3(1), c = 2181.6(2) pm, β = 90.97(1)° for 3 and a = 2015.4(1), b = 1316.7(1), c = 2157.0(1) pm, β = 90.40(1)° for 4 . Like in the cases of 1 and 2, polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains are observed. The [M(en)2]2+ units (M = Cu, Zn) act as linkers between the $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4] chains to give 2D layer structures with (6, 3) net topology.  相似文献   

15.
The title complex, {[Ni(C2H8N2)3][Na(NCS)3(H2O)]}n, con­sists of discrete [Ni(en)3]2+ dications (en is ethyl­enedi­amine) and polymeric [(H2O)0.5Na(NCS)3(H2O)0.5]n2n? anions. The compound crystallizes in space group Pc1. The NiII atom lies on a threefold axis and has a distorted octahedral coordination geometry. The Na+ cation also lies on a site with imposed crystallographic threefold symmetry and is coordinated by the thio­cyanate N atoms (the thio­cyanates are in general posi­tions), by one water mol­ecule with crystallographically imposed 32 symmetry and by a second water mol­ecule with crystallographically imposed symmetry. The unique Na atom thus has trigonal–bipyramidal coordination. The O atoms of the water mol­ecules bridge the Na+ cations to form one‐dimensional polymeric chains in the crystal structure. The [Ni(en)3]2+ dications are distributed around and between the chains and are linked to them via N—H?S hydrogen bonds.  相似文献   

16.
The structure of rhombohedral (R) iron(III) tris­[di­hydrogen­phosphate(I)] or iron(III) hypophosphite, Fe(H2PO2)3, has been determined by single‐crystal X‐ray diffraction. The structure consists of [001] chains of Fe3+ cations in octa­hedral sites with symmetry bridged by bidentate hypophosphite anions.  相似文献   

17.
A new polymeric copper complex, viz.catena‐poly[[[μ‐N,N′‐bis(3‐amino­propyl)oxa­mid­ato‐κ6N,N′,O:N′′,N′′′,O′]­dicopper(II)]‐di‐μ‐dicyan­amido‐1:1′κ2N1:N5;2:2′κ2N1:N5], [Cu2(C8H16N4O2)(C2N3)2]n or [Cu(oxpn)0.5{N(CN)2}]n [where H2oxpn is N,N′‐bis(3‐amino­propyl)­ox­amide], has been ­synthesized by the reaction of Cu(oxpn), [Cu(ClO4)2]·6H2O and NaN3. In the crystal structure, the Cu atom is five‐coordinate and has a square‐pyrimidal (SP) configuration. In the polymer, dicyan­amide (dca) groups link CuII cations in a μ‐1,5‐bridging mode, generating novel ladders in which each step is composed of dimeric [Cu2(oxpn)]2+ cations. Abundant hydrogen bonds connect the polymer ladders into a two‐dimensional network structure.  相似文献   

18.
利用水热法合成了两种过渡金属配合物为模板剂的含水硼酸盐晶体Co(en)3[B4O5(OH)4]Cl·3H2O(1) 和 [Ni(en)3][B5O6(OH)4]2·2H2O (2),并通过元素分析、X射线单晶衍射、红外光谱及热重分析对其进行了表征。化合物1晶体结构的主要特点是在所有组成Co(en)33+, [B4O5(OH)4]2–, Cl– 和 H2O之间通过O–H…O、O–H…Cl、N–H…Cl和N–H…O四种氢键连接形成网状超分子结构。化合物2晶体结构的特点是[B5O6(OH)4]–阴离子通过O–H…O氢键连接形成沿a方向有较大通道的三维超分子骨架,模板剂[Ni(en)3]2+阳离子和结晶水分子填充在通道中。  相似文献   

19.
The title compound, {[PtIIPtIVI2(C2H8N2)4](HPO4)(H2PO4)I·3H2O}n, has a chain structure composed of square‐planar [Pt(en)2]2+ and elongated octa­hedral trans‐[PtI2(en)2]2+ cations (en is ethyl­ene­diamine) stacked alternately along the c axis and bridged by the I atoms; a three‐dimensionally valence‐ordered system exists with respect to the Pt sites. The title compound also has a unique cyclic tetra­mer structure composed of two hydrogenphosphate and two dihydrogenphosphate ions connected by strong hydrogen bonds [O⋯O = 2.522 (10), 2.567 (10) and 2.569 (11) Å]. The Pt and I atoms form a zigzag ⋯I—PtIV—I⋯PtII⋯ chain, with PtIV—I bond distances of 2.6997 (7) and 2.6921 (7) Å, inter­atomic PtII⋯I distances of 3.3239 (8) and 3.2902 (7) Å, and PtIV—I⋯PtII angles of 154.52 (3) and 163.64 (3)°. The structural parameters indicating the mixed‐valence state of platinum, expressed by δ = (PtIV—I)/(PtII—I), are 0.812 and 0.818 for the two independent I atoms.  相似文献   

20.
In the title compound, {[Zn(C10H8N2)(H2O)4](C6H5O4S)2·3H2O}n, the Zn atom, the bipyridine ligand and one of water mol­ecules are located on twofold rotation axes. The Zn atom is coordinated by four O atoms from four water mol­ecules and two N atoms from two 4,4′‐bipyridine mol­ecules in a distorted octa­hedral geometry. The Zn2+ ions are linked by the 4,4′‐bipyridine mol­ecules to form a one‐dimensional straight chain propagating along the c axis. The 4‐hydroxy­benzene­sulfonate counter‐ions are bridged by the solvent water mol­ecules through hydrogen bonds to generate a two‐dimensional layer featuring large pores. In the crystal packing, the intra­layer pores form one‐dimensional channels along the c axis, in which the one‐dimensional [Zn(C10H8N2)(H2O)4]2+ chains are encapsulated. Electrostatic inter­actions between cations and anions and extensive hydrogen bonds result in a three‐dimensional supra­molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号