首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micro- and nanotubes of an amorphous carbon nitride material were synthesized by metathesis reactions between cyanuric chloride (C3N3Cl3) and different nitrogen sources, such as Li2(CN2) or Li3(BN2). The intermediate formation of needle-shaped crystals of N(C3N3Cl2)3 was always observed in our reactions, and investigated with respect to their role as a template in the formation of tubes. Chemical analyses of the micro- and nanotubes reveal carbon to nitrogen ratios near 3:4, consistent with the suspected material C3N4. Synthesized carbon nitride materials were thermally stable up to 600 °C in inert atmosphere. They were inspected by a number of physical measurements, mainly using TEM, EDX and IR investigations.  相似文献   

2.
In this proceeding, recent theoretical investigations by the authors on the multiferroic RMnO3 perovskites are briefly reviewed at first. Using the double-exchange model, the realistic spiral spin order in undoped manganites such as TbMnO3 and DyMnO3 is well reproduced by incorporating a weak next-nearest neighbor superexchange (~10% of nearest neighbor superexchange) and moderate Jahn-Teller distortion. The phase transitions from the A-type antiferromagnet (as in LaMnO3), to the spiral phase (as in TbMnO3), and finally to the E-type antiferromagnet (as in HoMnO3), with decreasing size of the R ions, were also explained. Moreover, new results of phase diagram of the three-dimensional lattice are also included. The ferromagnetic tendency recently discovered in the LaMnO3 and TbMnO3 thin films is explained by considering the substrate stress. Finally, the relationship between our double-exchange model and a previously used J1-J2-J3 model is further discussed from the perspective of spin wave excitations.  相似文献   

3.
Crystallographic texturing of polycrystalline ferroelectric ceramics offers a means of achieving significant enhancements in the piezoelectric response. Templated grain growth (TGG) enables the fabrication of textured ceramics with single crystal-like properties, as well as single crystals. In TGG, nucleation and growth of the desired crystal on aligned single crystal template particles results in an increased fraction of oriented material with heating. To facilitate alignment during forming, template particles must be anisometric in shape. To serve as the preferred sites for epitaxy and subsequent oriented growth of the matrix, the template particles need to be single crystal and chemically stable up to the growth temperature. Besides templating the growth process, the template particles may also serve as seed sites for phase formation of a reactive matrix. This process, referred to as Reactive TGG (RTGG), has been used to obtain highly oriented Pb(Mg1/3Nb2/3)O3-PbTiO3, Sr0.53Ba0.47Nb2O6, and (Na1/2Bi1/2)TiO3-BaTiO3. Highly oriented Bi4Ti3O12, Sr2Nb2O7, CaBi4Ti4O15, Pb(Mg1/3Nb2/3)O3-PbTiO3, Sr0.53Ba0.47Nb2O6 and (Na1/2Bi1/2)TiO3-BaTiO3 ceramics have been produced by TGG. The resulting ceramics show texture levels up to 90%, and significant enhancements in the piezoelectric properties relative to randomly oriented ceramics with comparable densities. For example, piezoelectric coefficients of textured piezoelectrics are from 2 to 3 times higher than polycrystalline ceramics and as high as 90% of the single crystal values. In textured PMN-PT, a low field (< 5 kV/cm) piezoelectric coefficient (d 33) of ~1600 pC/N was obtained with > 0.3% strain (at 50 kV/cm). The high field dielectric and electromechanical properties of textured perovskites are more hysteretic than those of single crystals, probably as a result of clamping by the residual template particles, residual random grains, the presence of non-ferroelectric second phases, and a wide orientation distribution. Lateral clamping of one grain by another may also be an important factor in fiber-textured samples. Means to further improve the quality of texture and thus properties of textured piezoelectric ceramics by TGG are presented.  相似文献   

4.
This work presents results from a study carried out on the Al/Cu3BiS3/Buffer/ZnO stacked layer, using high-resolution transmission electron microscopy (HRTEM). This system is used to fabricate solar cells with Al/Cu3BiS3/In2S3/ZnO and Al/Cu3BiS3/ZnS/ZnO structures. The conforming layers function as electrical contact, absorber layer, buffer layer, and optical window, respectively. The detailed results of Cu3BiS3 thin film investigation by HRTEM are presented. The Cu3BiS3 thin films are non-homogeneous and are strongly dependent on deposition conditions with grain size between 6.5 and 20?nm showing a nano-crystalline character. We found that the buffer layer of In2S3 grows in a polycrystalline structure, whereas the layer of ZnS reveals an amorphous structure. The performed study of these solar cells gives us significant information about their crystalline structure and allows us to visualize each of the constituting layers as well as of the Al/Cu3BiS3, Cu3BiS3/buffer, and buffer/ZnO interfaces. This study was correlated with electrical properties.  相似文献   

5.
The compounds ErCo3 and TmCo3 are ferrimagnetic with Curie temperatures of 401 K and 370 K, respectively. These absorb hydrogen to form ErCo3H4.3 and TmCo3H3.3. From magnetization studies on these as well as other RCo3 hydrides in the temperature interval 4.2 to 300 K, it is inferred that hydrogen absorption leads to a reduction in magnetic moment on cobalt and a weakening of the R-Co interaction (R = rare earth). Except in the case of the GdCo3-hydride, saturation in magnetization is not achieved at 4.2 K in applied fields up to 21 kOe. This suggests the possibility of fanning of rare earth moments. The RCo3-hydrides investigated earlier with R = Gd, Dy and Ho and the ErCo3-hydride and TmCo3-hydride all appear to be magnetically ordered at room temperature.  相似文献   

6.
U. Abend  X. J. Huang  W. Weppner 《Ionics》1997,3(5-6):427-435
The stability range of the metastable tetragonal phase in the ZrO2-Y2O3-TiO2 and ZrO2-Y2O3-Fe2O3 systems was investigated by XRD at room temperature. The solid solubility limit of TiO2 was found to be as high as 20 mol%, while that of Fe2O3 does not exceed 0.8 mol%. Impedance measurements show a decrease of the total conductivity, bulk conductivity and grain boundary conductivity as a result of the TiO2 and Fe2O3 addition. Dc-polarization measurements using the Hebb-Wagner technique were applied to determine the partial hole and electron conductivities of TiO2 and Fe2O3 co-doped samples. These show a slightly higher hole conductivity as compared to pure TZP and a remarkably higher electron conductivity as compared to TiO2 or Fe2O3 doped samples. The Hebb-Wagner curves are interpreted according to a model which considers the addition of mixed valence ions. The influence of the minority charge carriers on the charge-transfer resistance is investigated. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 23–19, 1997.  相似文献   

7.
The vibrational bands of dimethyl chalcogenides (CH3-X-CH3) (X = O,S,Se,Te) have been assigned on the basis of C2V symmetry by most of previous workers.1–13) On the other hand, some ones have assigned D3d to these molecules 14–15) and to structurally related compounds; SiH3-O-SiH3 16), CH3-Hg-CH3 17), CF3-Hg-CF3 18) and Cl3Si-O-SiCl3 19). The symmetry of ethane(CH3-CH3) is obviously D3d 20), because the vibrational spectra which indicate the lack of coincidence between Raman and infrared frequencies can be explained based upon D3d symmetry, and the bent c c should theoretically be impossible. The CH3-X-CH3 molecules are considered as a derivative in which CH3 group is connected to CH3 in opposite direction along the z axis and x atom is inserted between the two CH3 groups. Consequently, for a linear C-X-C model, the vibrational spectra of CH3-X-CH3 14,15) should be similar to those of CH3-CH3, except being added C-O-C stretching and bending bands. The obtained spectra of CH3-X-CH3 14,15) show a marked correspndence to that of ethane, and indicate that the rule of mutual exclusion holds between Raman and infrared frequencies. Therefore the symmetry of CH3-X-CH3 Seems to be D3d, But mst of the previom papers 1–13) have assigned C2v to CH3-X-CH3 as mentioned above.  相似文献   

8.
Grazing angle attenuated total reflectance Fourier transform infrared spectroscopy is applied to study ultrathin film Hf4+, Sc3+ and Dy3+oxides, due to its high surface sensitivity. The (multi)metal oxides studied, are of interest as high-k dielectrics. Important properties affecting the permittivity, such as the amorphous or crystalline phase and interfacial reactions, are characterized.Dy2O3 is prone to silicate formation on SiO2/Si substrates, which is expressed in DyScO3 as well, but suppressed in HfDyOx. Sc2O3, HfScOx and HfO2 were found to be stable in contact with SiO2/Si. Deposition of HfO2 in between Dy2O3 or DyScO3 and SiO2, prevents silicate formation, showing a buffer-like behavior for the HfO2.Doping of HfO2 with Dy or Sc prevents monoclinic phase crystallization. Instead, a cubic phase is obtained, which allows a higher permittivity of the films. The phase remains stable after anneal at high temperature.  相似文献   

9.
Rare-earth sesquifluorides with no absorption in visible spectral region, such as LaF3, GdF3, LuF3, YF3, ScF3, are the topic of intense study as a host for luminescence materials. However, except Nd:LaF3, they are not studied as a host for laser materials. The main obstacle troubling further study of GdF3, LuF3, YF3, ScF3 single crystal is the fact that there is first-order phase transition (LaF3 type↔beta-YF3 type for GdF3, alpha-YF3 type↔beta-YF3 type for the rest) between the room and melting temperature.To prevent the phase transition, first of all, we have tried to make solid solution between GdF3 and YF3 in such a way that the average cation radii can be shifted to the size that does not have phase transition. Ce3+ perturbed luminescence was observed in the Ce- and Sr-codoped GdF3-YF3 system. Similar solid solution concept was applied to the combination between GdF3 and YbF3. The emission spectrum of Yb3+ that exhibits broad bands around 1 μm was observed. Room temperature up-conversion luminescence spectra of Pr3+-doped Gd1−xYbxF3 were studied and visible emission from Pr3+ was obtained under infrared laser pumping in the Yb3+ broad absorption band at 935.5 nm.  相似文献   

10.
本文通过一个简单的、温和的方案制备了平均尺寸为120 nm,介孔结构的纳米粒子MnSiO3@Fe3O4@C. 粒子的细胞毒性微小,可以用作T1-T2*双模MRI造影剂. 酸性条件下MnSiO3@Fe3O4@C释放出大量的Mn2+缩短T1弛豫时间,提高成像分辨率. 超顺磁性的Fe3O4可以增强T2对比成像,检测病变组织. 类似于肿瘤微环境/细胞器的酸性PBS(pH=5.0)中Mn2+的释放率达到31.66%,约为中性条件(pH=7.4)下的7倍. 释放的Mn2+通过内吞作用被细胞摄取,经肾脏排出,细胞毒性实验表明,MnSiO3@Fe3O4@C具有低的细胞毒性,即使高浓度的200 ppm MnSiO3@Fe3O4@C对HeLa细胞的毒性也相对较小. 对荷瘤小鼠静脉注射定量MnSiO3@Fe3O4@C后,可以观察到一个快速增强的对比成像,给药24 h后,T1MRI信号显著增强,达到132%,而T2信号则明显降低至53.8%,活体MR成像证明了MnSiO3@Fe3O4@C可以同时作为阳性和阴性造影剂. 此外,得益于介孔MnSiO3优秀的酸敏感性,MnSiO3@Fe3O4@C可以作为一种潜在的药物载体,实现肿瘤的诊疗一体化.  相似文献   

11.
Crystal field parameters for Pr3+ in {[Ni(salen)Pr-(hfac)3](H2O)} (noted as NiPr) and {[Ni(salen)Pr(hfac)3(pyr)]-(CHCl3)} (noted as NiPrpyr) have been found from a fit to the thermal variation in the magnetic susceptibility of NiPr and NiPrpyr. The nature of exchange interaction in [Cu(salen)Pr(hfac)3(pyr)] (noted as CuPrpyr), {[{Cu(salen)Pr(hfac)3}2(pyz)](H2O)3} (noted as Cu2Pr2pyz) and {[{Cu(salen)Pr(hfac)3}2(bpy)]-(CHCl3)2} (noted as Cu2Pr2bpy, bpy=4,4_-bipyridine) have been found using the derived results for NiPr and NiPrpyr. All the exchange interactions give significant contribution to the thermal variation in magnetic susceptibility below 50 K. The contribution due to Pr-Cu interaction is positive while that of the Cu-Cu and Pr-Pr interactions are negative. The behaviors below 10 K for Pr-Cu and Pr-Pr are difficult to explain, and point to a possible change in structure of CuPrpyr, Cu2Pr2pyz and Cu2Pr2bpy below 10 K. The theoretical thermal variations in the magnetic specific heat of NiPr and NiPrpyr are computed and discussed.  相似文献   

12.
We have recently demonstrated that through a sol–gel route, superconductor crystallization in the presence of simple biopolymers results in a drastic alteration of morphology, producing technologically useful nanowires and porous architectures. Morphological control is of the utmost importance to bulk high-temperature superconductors, as grain boundaries act as weak links in limiting the achievable critical current density (Jc). Here we show that, as expected, the incorporation of nanoparticulate barium zirconate (BaZrO3) species into a biopolymer-mediated synthetic protocol for YBa2Cu3O7?δ (Y123) leads to a significantly improved in-field Jc compared to that observed in a sample without BaZrO3 additions. To ameliorate degradation of the BaZrO3 species in this protocol, we demonstrate that by drawing the precursor sol into fibers, a microtape architecture is able to be formed, leading to lengthy, anisotropic structures having enhanced Jc through the retention of the BaZrO3 species.  相似文献   

13.
The electronic structure of the Rhodium based intermetallic compounds (A3B) such as Rh3Sc, Rh3Y and Rh3La are studied by the Self Consistent Tight Binding Linear Muffin Tin Orbital (TB-LMTO) method. In the present work, an attempt has been made to understand why the compounds namely Rh3Y and Rh3La crystallize in hexagonal structure, rather than the cubic structure, where as some of the similar rhodium based A3B compounds namely Rh3Ti, Rh3Zr, Rh3Hf, Rh3V, Rh3Nb, Rh3Ta and Rh3Sc are found to stabilize in cubic structure. In this work a prediction has been made about the structural phase transition in Rh3Y and Rh3La, from Hexagonal phase to Cubic phase. A report of the lattice constant, bulk moduli, cohesive energy and electronic specific heat coefficient is made and is compared with the available experimental data. Band structure and density of states histograms are also plotted. An electronic topological transition is predicted in Rh3La, which may lead to the changes in the Fermi surface topology and hence changes the physical properties of Rh3La.  相似文献   

14.
BaTiO3–Bi0.5Na0.5TiO3 is one of the promising candidates as a high-temperature relaxor with a high Curie temperature and several preferred dielectric characteristics. It has been found experimentally for a long time that adding calcium to BaTiO3–Bi0.5Na0.5TiO3 improves its temperature characteristic of the capacitance [J. Electron. Mater. 39, 2471]. In this study, Calcium (Ca) defects in perovskite BaTiO3 and Bi0.5Na0.5TiO3 have been studied based on first-principles calculations. In both BaTiO3 and Bi0.5Na0.5TiO3, our calculations showed that Ca atom energetically prefers to substitute for the cations, that is Ba, Bi, Na and Ti, depending on the growth conditions. In most cases, Ca predominantly substitutes on the A-site without providing additional electrical carriers (serve as either neutral defects or self-compensating defects). The growth conditions where Ca can be forced to substitute for B-site (with limited amount) and the conditions where Ca can be forced to serve as an acceptor are identified. Details of the local structures, formation energies and electronic properties of these Ca defects are reported.  相似文献   

15.
Comparative investigation of the optical amplification properties of dysprosium doped Gd2SiO5, Lu2SiO5 and YAl3(BO3)4 single crystals was performed in a pump-and-probe experiment. High power laser pulses at 475 nm were used as the pump source in order to strongly populate the 4F9/2 level of the Dy3+ ions due to ground state absorption. Low signal beam cw radiation at 574 nm was used as the probe beam to stimulate the emission associated with the 4F9/26H13/2 electronic transition of the Dy3+ ions. The process was modelled as a three levels system, and their populations were analysed and simulated in order to study the gain dynamics. Positive optical gain was observed and compared in these crystals. These results confirmed that among the systems studied the Dy3+-doped YAl3(BO3)4 single crystal can be considered as a good candidate to develop an optical amplifier employing the 4F9/26H13/2 transition at around 574 nm which is the first step to consider as laser active media.  相似文献   

16.
La3Ni2B2N3, which is similar to YNi2B2C and related borocarbides, was earlier studied by the electronic structure calculations [D.J. Singh, W.E. Pickett, Phys. Rev. B 51 (1995) 8668.], and was predicted to be a 3-D metal. In search of new compounds of the borocarbide and related families to get higher TC, we have studied the compound Th3Ni2B2N3, by the first principles full potential electronic structure calculations by the linear augmented plane wave method. We get similar band structure for Th3Ni2B2N3 as found for La3Ni2B2N3, and the various atom-split component density of states show similar properties. The total electron density of states at Fermi level has been increased to about 92 states per Ry per f.u. as compared to 57 states per Ry per f.u. in La3Ni2B2N3. The main increase is due to the increased hybridization of the 5f states as seen by the more prominent low energy tail in the Th-component density of states. Based on this enhancement we predict Th3Ni2B2N3 to be a high temperature superconductor with a Tc in excess of 30 K.  相似文献   

17.
Nanostructured topological insulator materials such as ultrathin films, nanoplates, nanowires, and nanoribbons are attracting much attention for fundamental research as well as potential applications in low-energy dissipation electronics, spintronics, thermoelectrics, magnetoelectrics, and quantum computing due to their extremely large surface-to-volume ratios and exotic metallic edge/surface states. Layered Bi2Se3 and Bi2Te3 serve as reference topological insulator materials with a large nontrivial bulk gap up to 0.3 eV (equivalent to 3600 K) and simple single-Dirac-cone surface states. In this mini-review, we present an overview of recent advances in nanostructured topological insulator Bi2Se3 and Bi3Te3 from the viewpoints of controlled synthesis and physical properties. We summarize our recent achievements in the vapor-phase synthesis and structural characterization of nanostructured topological insulator Bi2Se3 and Bi2Te3, such as nanoribbons and ultrathin nanoplates.We also demonstrate the evolution of Raman spectra with the number of few-layer topological insulators, as well as the transport measurements that have succeeded in accessing the surface conductance and surface state manipulations in the device of topological insulator nanostructures.  相似文献   

18.
In this work atomic layer deposition of Al2O3 and TiO2 has been used to obtain dielectric stacks for passivation of silicon surfaces. Our experiments on n‐ and p‐type silicon wafers deposited by thin Al2O3/TiO2 stacks show that a considerably improved passivation is obtained compared to the Al2O3 single layer. For Al2O3 films thinner than 20 nm the emitter saturation current density decreases with increasing TiO2 thickness. Especially the passivation of ultrathin (~5 nm) Al2O3 is very effectively enhanced by TiO2 due to a decreased interface defect density as well as an increased fixed negative charge in the stacks. Hence, the thin Al2O3/TiO2 stacks developed in this work can be used as a passivation coating for Si‐based solar cells. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The metastable 3s3p3P0, 1, 2 states of the magnesium atom immersed into superfluid helium have been investigated. Absorption-fluorescence measurements were carried out to monitor the population of the3P0,3P1 and3P2 level as a function of time. The population of these levels was found to decrease exponentially with a constant of =15±2 ms. This is about three times as long as the vacuum lifetime of the3P1 level. In the resonant excitation band of the 3s3p3P states to the 3s4s3S state a blueshift of 70 nm compared to the emission and a large broadening were detected. The3P2 and3P0 states are not at all metastable any more. Additionally the weak intercombination transition of the3P1 state to the1S0 ground state was investigated by monitoring this emission line as a function of time and of wavelength. The experiments resulted in the same exponential decay time as the excitation measurement. This outcome indicates a rather effective fine structure mixing of the considered Mg states in superfluid helium. Moreover, this raises the question whether common atomic quantum numbers are conserved and the selection rules are still valid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号