首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several thermal treatments in the temperature range from 270 °C to 320 °C (each of 10 min) were tested as a final preparation procedure of LiF:Mg,Cu,Si to improve the protocol of TL readout with less residual signal for the LiF:Mg,Cu,Si TLD. This high sensitivity LiF:Mg,Cu,Si TLD exhibited thermal stability much better than that of the well known LiF:Mg,Cu,P. For LiF:Mg,Cu,Si, a readout temperature up to 300 °C did not affect the TL sensitivity and glow curve structure for 12 cycles of exposure and readout following an initial thermal treatment at 295 °C for 10 min. The residual TL signal also remained negligible.  相似文献   

3.
We investigated the thermal degradation of LiF:Mg,Cu,P (NTL-250) and LiF:Mg,Cu,Si (MCS) for the development of TL sheet. By thermogravimetry and differential scanning calorimetry (TG-DSC), the exothermic reaction was observed between 320 °C and 400 °C in MCS as well as NTL-250. The heat value of MCS was twice as large as that of NTL-250. This ratio corresponded with that of Mg amount in these TL materials measured by ICP-OES (inductively-coupled plasma optical emission spectrometry). X-ray diffraction (XRD) measurements were also carried out, and the peaks of MgF2 phase were also observed in degraded MCS sample as well as NTL-250. Moreover, X-ray absorption near-edge structures (XANES) of Cu in these LiF TLDs were measured. The valences of Cu did not change before and after degradation. It indicates that the thermal degradation is caused by not Cu but Mg ion state change. The exothermic reaction is possible caused by the stabilization reactions, and then it was expected to correspond with MgF2 precipitation. From these results, we concluded that the thermal degradations of these LiF TLDs are caused by the precipitation of MgF2.  相似文献   

4.
The preparation method and some dosimetric properties of the new LiF:Mg,Cu,Si discs are presented. The effect of heat treatments on LiF:Mg,Cu,Si was investigated. The shape of the glow curve for LiF:Mg,Cu,Si is similar to that for standard LiF:Mg,Cu,P (GR-200A), and shows minimal differences when annealed in the range from 260 °C to 290 °C for 10 min. The TL sensitivity for LiF:Mg,Cu,Si is much lower than that for GR-200A, but is 35 times larger than that for TLD-100 and is slightly higher than that for HMCP. The height of the high-temperature peaks for LiF:Mg,Cu,Si is not only lower than that for GR-200A, but also lower than that for HMCP. The glow curve shape of LiF:Mg,Cu,Si annealed at 260 °C for different times shows minimal differences and TL response remains stable. These results indicate that the new LiF:Mg,Cu,Si disc has a good stability to thermal treatments and a lower residual TL signal.  相似文献   

5.
Nanocrystalline LiF:Mg, Cu, P of rod shape (about 30-40 nm in diameter and 0.3-0.5 μm in length) has been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and dosimetric characteristics of the nanocrystalline phosphor are studied and presented here. The formation of the material was confirmed by the X-ray diffraction (XRD). Its shape and size were also observed by transmission electron microscope (TEM). The TL glow curve of the nanocrystalline powder shows a single peak at 410 K along with four overlapping peaks of lesser intensities at around 570, 609, 638 and 663 K. The observed TL sensitivity of the prepared nanocrystalline powder is less than that of the commercially available “Harshaw TLD-700H hot-pressed chips” at low doses but it still around three times more than that of LiF:Mg, Ti (TLD-100) phosphor. The 410 K peak of the nanomaterial phosphor shows a very linear response with exposures increasing up to very high values (as high as 10 kGy), where all the other thermoluminesent dosimeters (TLD) phosphors show saturation. This linear response over a large span of exposures (0.1 Gy-10 kGy) along with negligible fading and its insensitivity to heating treatments makes the nanocrystalline phosphor useful for its application to estimate high exposures of γ-rays. The ‘tissue equivalence’ property of this material also makes it useful over a wide range of high-energy radiation.  相似文献   

6.
Thermoluminescence (TL) glow curves of LiF:Mg,Cu,Si were deconvoluted with the introduction of enhanced physical model which envisages that both electrons and holes, produced by ionization radiation and trapped at the respective traps, can be thermally released into the conduction and the valence band, respectively and the holes may also radiatively recombine with electrons at the electron recombination centers. The model is more generalized than the ordinary trap interaction model which only permits the traffic of electrons through the conduction band. An effective numerical analysis method was developed to calculate the glow curve to be compatible with the measured curves. The validity of the numerical method was verified through artificially generated TL glow curves for a wide range of trap parameters. In order to identify TL kinetics of LiF:Mg,Cu,Si with higher accuracy, its glow curves were deconvoluted for two more generalized models, namely, the Schön–Klasens model and the Chen–Pagonis–Lawless model as well as the ordinary trap interactive model. The parameters in the more generalized multi-trap multi-recombination center (MTMR) model were found to be consistent with the quasi-static approximation(QSA) method.  相似文献   

7.
Results from spectral studies of the optical and luminescent properties of single crystals of lithium fluoride grown using the Czochralski technique and doped with ions of copper and magnesium, are presented. The effect of heat treatment regimes and the dependence of the concentration of magnesium impurities on the sensitivity of crystals of LiF:Mg, Cu to ionizing radiation are discussed.  相似文献   

8.
Newly developed LiF:Mg,Cu,Si was found to exhibit no significant fading on room temperature post-irradiation storage up to several months. In view of the wide variation in the reported data of fading of LiF:Mg,Cu,P exhibiting glow curve structure similar to that of LiF:Mg,Cu,Si, a study of the effect of post-irradiation storage and thermal treatments on the deconvoluted glow peaks of LiF:Mg,Cu,Si was undertaken. The decay of inseparable peak-3 by post-irradiation storage or thermal treatments did not indicate any rearrangement in the trap occupation that would affect the response of the main peak (peak-4). A post-irradiation treatment at 125 °C for 10 min was found to be the optimum to eliminate the lower temperature peaks.  相似文献   

9.
The dependence of thermoluminescence (TL) of LiF:Mg,Cu,Si on sintering temperatures and dopants concentrations were investigated. The dependency of the TL in LiF:Mg,Cu,Si on sintering temperature exhibits a very sharp maximum at 830 °C. LiF:Mg,Cu,Si is much too sensitive than LiF:Mg,Cu,P to sintering temperature. The glow curve and the TL sensitivity depend on the concentration of Mg, Cu and Si, showing a distinct maximum for certain concentrations of these impurities. Mg seems to be the most essential dopant, as very small changes of the Mg content strongly influence both the glow curve and the TL sensitivity. Si is the main activator responsible for TL emission. The stability to heat treatments in LiF:Mg,Cu,Si was influenced greatly by Mg concentrations. The thermal instability in LiF:Mg,Cu,Si is caused not by Cu and Si but Mg ion state change. It was found that the optimum concentrations are Mg:0.6 mol%, Cu:0.03 mol% and Si:0.9 mol% for this material, which showed the best stability to heat treatment.  相似文献   

10.
The badge system of personal thermoluminescence (TL) dosimeter for photon fields using LiF:Mg,Cu,Na,Si TL material, which was developed by Korea Atomic Energy Research Institute (KAERI) a few years ago, was developed by taking advantage of its dosimetric properties including energy dependencies. A badge filter system was designed by practical irradiation experiments supported by computational modeling using Monte Carlo simulation. Design properties and dosimetric characteristics such as photon energy response and angular dependence of new TL dosimeter system examined through the irradiation experiments are presented. Based on the experiments for the developed dosimeter, it is demonstrated that the deep dose response of dosimeter provided the value between 0.78 and 1.08, which is within the design limit by ISO standard. This multi-element TL dosimeter badge system allows the discrimination of the incident radiation type between photon and beta by using the ratios of the four TL detectors. Personal TL dosimeter using sintered LiF:Mg,Cu,Na,Si TL detectors has the ability to measure a personal dose equivalent Hp(d) for a wide range of photon energies.  相似文献   

11.
Standard thermoluminescent (TL) detectors, owing to their relatively large thickness, may seriously underestimate personal skin doses which are defined at the depth of 7 mg cm−2. New TL ultra-thin, LiF:Mg,Cu,P-based detectors have been developed at the Institute of Nuclear Physics to fulfill simultaneously the requirements of flat energy response for beta rays and the ability to measure low beta ray doses. In our detectors a thin layer of MCP phosphor is bonded with a thick base of undoped LiF. We assess the effective thickness of this detector to be 8.5 mg cm−2. Tests of these detectors exposed with and without covering foil to 147Pm, 204Tl and 90Sr/90Y calibrated beta fields indicate that our detectors feature an essentially flat energy response and good angular characteristics. The sensitivity of our detectors permits doses in the microsievert range to be measured reliably.  相似文献   

12.
Thermoluminescence (TL) properties of LiF: Mg, Cu, Si phosphor prepared in multicrystalline form using edge defined film fed growth (EFG) technique has been investigated. The effect of preparation route on TL properties and thermal stability has been studied. To improve the TL dosimetry properties, phosphor is subjected to different annealing temperatures ranging from 250 °C to 450 °C. The shape of the glow curve structure and peak temperature remains similar at different annealing temperatures, however peak intensities vary. The consistency in the glow curve structure with annealing temperature elucidate that TL trapping states are stable in nature. Thermal annealing at 300 °C for 10 min gives maximum TL intensity with main dosimetry peak at 209 °C. The TL intensity of the main dosimetry peak is increased by a factor of five as compared to as-grown crystal. The thermal stability of LiF: Mg, Cu, Si is found to be better than LiF: Mg, Cu, P. Trapping parameters are calculated to have an insight study of defect states. A simple glow curve structure, tissue equivalency, thermal stability, low residual signal, linear response and reusability makes LiF: Mg, Cu, Si a suitable phosphor for radiation therapy, radio diagnostics and personnel dosimetry applications.  相似文献   

13.
In this study, electronic structure of lithium fluoride thin films in pure state and doped with magnesium (Mg), copper (Cu) and phosphorus (P) impurities was studied using WIEN2K Code. The structural and electronic properties of two LiF thin films with 1.61 and 4.05?nm thicknesses were studied and compared. Results show that the distance of atoms in the surface and central layers of pure LiF are 1.975 and 2.03?nm, respectively. Electronic density of the valence band around the surface atoms is greater than that around middle atoms of the supercell. The band gap of bulk LiF is 9?eV. But, in the case of thin films, it is reduced to 2?eV. Electronic and hole-traps were not observed in composition of LiF thin films doped with Mg and P with 1.61 and 4.05?nm thickness and in fact, metallic properties were observed. When Cu atoms were doped in composition of an LiF thin film, the thin film was converted to semiconductor.  相似文献   

14.
The dosimetric properties of the newly developed KLT-300 (KAERI LiF:Mg,Cu,Na,Si TL detector) in KAERI (Korea Atomic Energy Research Institute) were investigated. The sensitivity of the TL detector was about 30 times higher than that of the TLD-100 by light integration. In the study of the dose linearity of the detector, the dose response was very linear up to 10 Gy and a sublinear response was observed at higher doses. The energy response of the detector was studied for photon energies from 20 to 662 keV. The results show that a maximum response of 1.004 at 53 keV and a minimum response of 0.825 at 20 keV were observed. The reproducibility study for the TL detector was also carried out. The coefficients of variation for each detector separately did not exceed 0.016, and for all the 10 detectors collectively it was 0.0054. IEC Standard requires that the coefficient of variation shall not exceed 0.075. So, the reproducibility of this new TL detector sufficiently satisfied the IEC requirements. A detection threshold of the detector was investigated and found to be 70 nGy by Harshaw 4500 TLD Reader.  相似文献   

15.
16.
Within a systematic study of a novel system enabling 2D readout of TL foils, the X-ray energy and dose response was investigated in TL foils containing LiF:Mg,Cu,P (MCP-N) or CaSO4:Dy as activators. Foils were exposed to broad X-ray beams of mean energies ranging between 45 keV and 208 keV (ISO 4037 standard), with reference to 662 keV 137Cs gamma rays. The MCP-N foils, of about 380 nm emission wavelength, show a flat X-ray energy response, but low sensitivity. Due to poor TL light detection efficiency of the CCD (charge-coupled device) camera over this range of wavelengths, only doses exceeding 500 mGy can be reliably measured. In the case of CaSO4:Dy foils, their TL light emitted around 450 nm wavelengths is registered by the CCD camera with no loss of efficiency, enabling X-ray doses as low as 100 mGy to be evaluated. Unlike that of MCP-N, the dose response of CaSO4:Dy foils is highly supralinear. Nevertheless, within experimental conditions applied in this study, the 2D-TL technique may be applied to determine Entrance Surface Dose or Maximum Skin Dose in radiology. The more sensitive CaSO4:Dy foils could be used only in a well-specified radiation field (e.g., in mammography) or in qualitative dose mapping.  相似文献   

17.
18.
In this study we compared the proficiency testing performance of the Thermo Fisher active electronic personal dosimeter (EPD-Mk2) to the passive Thermoluminescent (TLD) dosimetry (LiF:Mg, Cu, P) in four testing categories as part of proficiency testing. One hundred and thirty two EPDs and comparable number of TLDs were submitted to Pacific Northwest National Laboratory (PNNL) and were subsequently irradiated with four categories of radiations in accordance with ANSI HPS 13.11-2009 criteria. The TLD performance was significantly better than EPDs in all categories. In addition, the EPD-Mk2 under responded in the accident category for M150 X-ray beam primarily due to the dose rate. The EPD-Mk2 was unable to respond to the exposure rate increase associated with accident category. The study showed that while the performance of EPD-Mk2 has improved to the point of passing ANSI HPS 13.11-2009, it requires that the user has a significant knowledge of the exposure scenario and radiation field.  相似文献   

19.
The behaviour of LiF:Mg,Cu,P and LiF:Mg,Ti detectors at ultra-high doses up to 1 MGy, has been investigated. The presence of the ultra-high-temperature peak (450 °C) of reproducible properties was observed in various batches of LiF:Mg,Cu,P, confirming earlier findings. The results indicate that this peak is not an effect of random impurities nor intrinsic effects of LiF, but it is rather connected with the doping.A parameter called ultra-high temperature ratio (UHTR) was defined in order to quantify the observed changes of LiF:Mg,Cu,P glow-curve shape at very high doses and very high temperatures. The use of this parameter allows to determine an absorbed dose in the range from 1 kGy to 1 MGy. This new method of high-dose dosimetry makes LiF:Mg,Cu,P a unique dosimeter, which is capable to cover at least 12 orders of magnitude of dose range: from a microgray to a megagray.  相似文献   

20.
The U.S. Navy uses a dosimetric system, which employs the LiF:Mg,Cu,P thermoluminescence dosimeters (TLDs), developed and produced by Thermo Fisher Scientific. Every two years, the Naval Dosimetry Center (NDC) performs proficiency testing to maintain its national accreditation. Since 2007, the U.S. Navy has also tested InLight Basic - OSLN Optically Stimulated Luminescence Al2O3:C dosimeters (OSLD) manufactured by Landauer. In 2011 and 2013, the Naval Dosimetry Center performed proficiency testing for both systems. Here we present a comparison of the performance of TLDs (LiF:Mg,Cu,P) and OSLDs (Al2O3:C) in five categories of proficiency testing. The testing included irradiation with photons, neutrons, beta particles and selected mixtures of these radiations. All irradiations were performed at the Pacific Northwest National Laboratory (PNNL). The delivered doses were not reported to the NDC. The official comparison of delivered and reported doses was conducted by PNNL in terms of dose bias and its standard deviation for each category of accreditation. In total, the NDC reported to the PNNL doses for 147 dosimeters of each type (TLD and OSLD). Both NDC tested dosimetric systems have passed established limits. The comparison of OSLD and TLD system performance in each category is discussed. Advantages and disadvantages of both systems are analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号