首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Two closely related oximes, namely 1‐chloroacetyl‐3‐ethyl‐2,6‐diphenylpiperidin‐4‐one oxime, C21H23ClN2O2, (I), and 1‐chloroacetyl‐2,6‐diphenyl‐3‐(propan‐2‐yl)piperidin‐4‐one oxime, C22H25ClN2O2, (II), despite their identical sets of hydrogen‐bond donors and acceptors, display basically different hydrogen‐bonding patterns in their crystal structures. While the molecules of (I) are organized into typical centrosymmetric dimers, created by oxime–oxime O—H...N hydrogen bonds, in the structure of (II) there are infinite chains of molecules connected by O—H...O hydrogen bonds, in which the carbonyl O atom from the chloroacetyl group acts as the hydrogen‐bond acceptor. Despite the differences in the hydrogen‐bond schemes, the –OH groups are always in typical anti positions (C—N—O—H torsion angles of ca 180°). The oxime group in (I) is disordered, with the hydroxy groups occupying two distinct positions and C—C—N—O torsion angles of approximately 0 and 180° for the two alternatives. This disorder, even though the site‐occupancy factor of the less occupied position is as low as ca 0.06, is also observed at lower temperatures, which seems to favour the statistical and not the dynamic nature of this phenomenon.  相似文献   

3.
The asymmetric unit of the title salt, 2NH4+·B10H102−·1.5H2O or (NH4)2B10H10·1.5H2O, (I), contains two B10H102− anions, four NH4+ cations and three water molecules. (I) was converted to the anhydrous compound (NH4)2B10H10, (II), by heating to 343 K and its X‐ray powder pattern was obtained. The extended structure of (I) shows two types of hydrogen‐bonding interactions (N—H...O and O—H...O) and two types of dihydrogen‐bonding interactions (N—H...H—B and O—H...H—B). The N—H...H—B dihydrogen bonding forms a two‐dimensional sheet structure, and hydrogen bonding (N—H...O and O—H...O) and O—H...H—B dihydrogen bonding link the respective sheets to form a three‐dimensional polymeric network structure. Compound (II) has been shown to form a polymer with the accompanying loss of H2 at a faster rate than (NH4)2B12H12 and we believe that this is due to the stronger dihydrogen‐bonding interactions shown in the hydrate (I).  相似文献   

4.
We combine the supramolecular chemistry of heterocyclic ureas with the chemistry of epoxides to synthesize new crosslinked materials incorporating both chemical and supramolecular hydrogen‐bonded links. A two‐step facile and solvent‐free procedure is used to obtain chemically and thermally stable networks from widely available ingredients: epoxy resins and fatty acids. The density of both chemical and physical crosslinks is controlled by the stoichiometry of the reactants and the use of a proper catalyst to limit side reactions. Depending on the stoichiometry, a wide range of thermomechanical properties can be attained. The method can be used to produce elastomeric objects of complex shapes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1133–1141, 2010  相似文献   

5.
An 2‐ureido‐4[1H]pyrimidinone (UPy) motif with self‐association capability (through quadruple hydrogen bonds) was successfully anchored onto montmorillonite clay layers. Polymer/clay nanocomposites were prepared by specific hydrogen bonding interactions between surface functionalized silica nanoclays and UPy‐bonded supramolecular poly(ethylene glycol) or poly(?‐caprolactone). The mixed morphologies including intercalated layers with a non‐uniform separation and exfoliated single layers isolated from any stack were determined by combined X‐ray diffraction and transmission electron microscopic measurements. Thermal analyses showed that all nanocomposites had higher decomposition temperatures and thermal stabilities compared with neat polymer. The differential scanning calorimetric data implied that the crystallinity of polymers did not show essential changes upon introduction of organomodified UPy clays. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 650–658  相似文献   

6.
The sensing mechanism of a fluoride‐anion probe BODIPY‐amidothiourea ( 1c ) has been elucidated through the density functional theory (DFT) and time‐dependent density functional theory (TDDFT) calculations. The theoretical study indicates that in the DMSO/water mixtures the fluorescent sensing has been regulated by the fluoride complex that formed between the probe 1c /two water molecules and the fluoride anion, and the excited‐state intermolecular hydrogen bond (H‐B) plays an important role in the fluoride sensing mechanism. In the first excited state, the H‐Bs of the fluoride complex 1cFH2 are overall strengthened, which induces the weak fluorescence emission. In addition, molecular orbital analysis demonstrates that 1cFH2 has more obvious intramolecular charge transfer (ICT) character in the S1 state than 1cH2 formed between the probe 1c and two water molecules, which also gives reason to the weaker fluorescence intensity of 1cFH2 . Further, our calculated UV‐vis absorbance and fluorescence spectra are in accordance with the experimental measurements. © 2018 Wiley Periodicals, Inc.  相似文献   

7.
N—H...O bonding in a form of 5‐butyl‐5‐ethylbarbituric acid (systematic name: 5‐butyl‐5‐ethyl‐1,3‐diazinane‐2,4,6‐trione), C10H16N2O3, produces two distinct one‐dimensional motifs, viz. tape and ladder. Both are different from the ribbon chain motif observed in two previously reported polymorphs of the same compound.  相似文献   

8.
In xanthinium nitrate hydrate [systematic name: 2,6‐dioxo‐1,2,3,6‐tetrahydro‐9H‐purin‐7‐ium nitrate monohydrate], C5H5N4O2+·NO3·H2O, (I), and xanthinium hydrogen sulfate hydrate [systematic name: 2,6‐dioxo‐1,2,3,6‐tetrahydro‐9H‐purin‐7‐ium hydrogen sulfate monohydrate], C5H5N4O2+·HSO4·H2O, (II), the xanthine molecules are protonated at the imine N atom with the transfer of an H atom from the inorganic acid. The asymmetric unit of (I) contains a xanthinium cation, a nitrate anion and one water molecule, while that of (II) contains two crystallographically independent xanthinium cations, two hydrogen sulfate anions and two water molecules. A pseudo‐quadruple hydrogen‐bonding motif is formed between the xanthinium cations and the water molecules via N—H...O and O—H...O hydrogen bonds in both structures, and leads to the formation of one‐dimensional polymeric tapes. These cation–water tapes are further connected by the respective anions and aggregate into two‐dimensional hydrogen‐bonded sheets in (I) and three‐dimensional arrangements in (II).  相似文献   

9.
Development of effective organocatalysts for the living ring‐opening polymerization (ROP) of lactones is highly desired for the preparation of biocompatible and biodegradable polyesters with controlled microstructures and physical properties. Herein, a new class of hydrogen‐bond donating bisurea catalysts is reported for the ROP of lactones under solvent‐free conditions. ROP of lactones mediated by the bisurea/7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (MTBD) catalyst exhibits a living/controlled manner, affording the polymers and copolymers with the well‐defined structure, predictable molecular weight, narrow molecular weight distribution, and high selectivity for monomer at low catalyst loadings at ambient temperature. The possible mechanism of bisurea/MTBD‐catalyzed ROP of lactones is proposed, in which the bisurea activates the carbonyl group of lactones while MTBD facilitates the nucleophilic attack of the initiating/propagating alcohol by hydrogen bonding. Moreover, the poly(ε‐caprolactone‐co‐δ‐valerolactone) [P(CL‐co‐VL)] random copolymers with various compositions were synthesized using the bisurea/MTBD catalyst. The measurements of thermal properties and crystalline structure demonstrate that the CL and VL units are cocrystallized in the crystalline phase of P(CL‐co‐VL) copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 90–100  相似文献   

10.
The novel title organic salt, 4C5H7N2+·C24H8O84−·8H2O, was obtained from the reaction of perylene‐3,4,9,10‐tetracarboxylic acid (H4ptca) with 4‐aminopyridine (4‐ap). The asymmetric unit contains half a perylene‐3,4,9,10‐tetracarboxylate (ptca4−) anion with twofold symmetry, two 4‐aminopyridinium (4‐Hap+) cations and four water molecules. Strong N—H...O hydrogen bonds connect each ptca4− anion with four 4‐Hap+ cations to form a one‐dimensional linear chain along the [010] direction, decorated by additional 4‐Hap+ cations attached by weak N—H...O hydrogen bonds to the ptca4− anions. Intermolecular O—H...O interactions of water molecules with ptca4− and 4‐Hap+ ions complete the three‐dimensional hydrogen‐bonding network. From the viewpoint of topology, each ptca4− anion acts as a 16‐connected node by hydrogen bonding to six 4‐Hap+ cations and ten water molecules to yield a highly connected hydrogen‐bonding framework. π–π interactions between 4‐Hap+ cations, and between 4‐Hap+ cations and ptca4− anions, further stabilize the three‐dimensional hydrogen‐bonding network.  相似文献   

11.
12.
The title compound, 2C14H13N2+·S2O82−·2H2O, is a protonated amine salt which is formed from two rather uncommon ionic species, namely a peroxodisulfate (pds2−) anion, which lies across a crystallographic inversion centre, and a 2,9‐dimethyl‐1,10‐phenanthrolin‐1‐ium (Hdmph+) cation lying in a general position. Each pds2− anion binds to two water molecules through strong water–peroxo O—H...O interactions, giving rise to an unprecedented planar network of hydrogen‐bonded macrocycles which run parallel to (100). The atoms of the large R88(30) rings are provided by four water molecules bridging in fully extended form (...H—O—H...) and four pds2− anions alternately acting as long (...O—S—O—O—S—O...) and short (...O—S—O...) bridges. The Hdmph+ cations, in turn, bind to these units through hydrogen bonds involving their protonated N atoms. In addition, the crystal structure also contains π–π and aromatic–peroxo C—H...O interactions.  相似文献   

13.
Novel co‐polymerization polyimide (PI) fibers based on 4,4′‐oxydianiline (ODA)‐pyromellitic dianhydride (PMDA) were prepared. 2‐(4‐Aminophenyl)‐5‐aminobenzimidazole (PABZ) containing the N? H group was introduced into the structure of the fibers as the proton donor. The results of Fourier transform infrared (FTIR) and dynamic mechanical analysis (DMA) showed that hydrogen bonding occured between the N? H group and chains, which strongly enhanced interchain interaction. This hydrogen bonding interaction increased the tensile strength and initial modulus of the PI fibers up to 2.5 times and 26 times, respectively, compared to those of homo‐PI PMDA‐ODA fibers with no hydrogen‐bonding interaction because of the absence of proton donors after the imidization process. In the mean time, glass transition temperature (Tg) of the modified PI fibers was found to be 410–440°C, which was higher than that of the homo‐PI PMDA‐ODA fibers. From the result, a novel access to molecular design and manufacture of high performance PI fibers with good properties could be provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The title compound, C10H20N3O4·1.094H2O, crystallizes with two dipeptide molecules in the asymmetric unit, each participating in two head‐to‐tail chains with hydrogen bonds between the terminal amino and carboxylate groups. As with many other dipeptides, the resulting structure is divided into distinct layers, but as the amide groups of the two peptide molecules participate in different types of interaction, the observed hydrogen bonds within a peptide main‐chain layer (as distinct from the side‐chain/solvent regions) cannot adapt to any of the four basic patterns observed previously for dipeptides. Instead, a rare hybrid pattern is formed.  相似文献   

15.
Single‐chain folding via intramolecular noncovalent interaction is regarded as a facile mimicry of biomacromolecules. Single‐chain folding and intramolecular crosslinking is also an effective method to prepare polymer nanoparticles. In this study, poly(methyl methacrylate‐co?2‐ureido‐5‐deazapterines functionalized ethylene methacrylate) (P(MMA‐co‐EMA‐DeAP)) is synthesized via free radical polymerization. The single‐chain folding of P(MMA‐co‐EMA‐DeAP) and the formation of the nanoparticles in diluted solution (concentration <0.005 mg/mL) are achieved via supramolecular interaction and intramolecular collapsing during the disruption‐reformation process of the hydrogen bonding triggered by water. The size and the morphology of the nanoparticles are characterized by dynamic light scattering, transmission electron microscope, and atomic force microscope. The results show that the size of the nanoparticles depends on the molecular weight of the polymer and the loading of 2‐ureido‐5‐deazapterines functionalized ethylene methacrylate (EMA‐DeAP) on the polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1832–1840  相似文献   

16.
17.
We have reported that intramolecular chain‐transfer reaction takes place in radical polymerization of itaconates at high temperatures and/or at low monomer concentrations. In this article, radical polymerizations of di‐n‐butyl itaconate (DBI) were carried out in toluene at 60 °C in the presence of amide compounds. The 13C‐NMR spectra of the obtained poly(DBI)s indicated that the intramolecular chain‐transfer reaction was suppressed as compared with in the absence of amide compounds. The NMR analysis of DBI and N‐ethylacetamide demonstrated both 1:1 complex and 1:2 complex were formed at 60 °C through a hydrogen‐bonding interaction. The ESR analysis of radical polymerization of diisopropyl itaconate (DiPI) was conducted in addition to the NMR analysis of the obtained poly(DiPI). It was suggested that the suppression of the intramolecular chain‐transfer reaction with the hydrogen‐bonding interaction was achieved by controlling the conformation of the side chain at the penultimate monomeric unit of the propagating radical with an isotactic stereosequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4895–4905, 2004  相似文献   

18.
Nine salts of the antifolate drugs trimethoprim and pyrimethamine, namely, trimethoprimium [or 2,4‐diamino‐5‐(3,4,5‐trimethoxybenzyl)pyrimidin‐1‐ium] 2,5‐dichlorothiophene‐3‐carboxylate monohydrate (TMPDCTPC, 1:1), C14H19N4O3+·C5HCl2O2S, ( I ), trimethoprimium 3‐bromothiophene‐2‐carboxylate monohydrate, (TMPBTPC, 1:1:1), C14H19N4O3+·C5H2BrO2S·H2O, ( II ), trimethoprimium 3‐chlorothiophene‐2‐carboxylate monohydrate (TMPCTPC, 1:1:1), C14H19N4O3+·C5H2ClO2S·H2O, ( III ), trimethoprimium 5‐methylthiophene‐2‐carboxylate monohydrate (TMPMTPC, 1:1:1), C14H19N4O3+·C6H5O2S·H2O, ( IV ), trimethoprimium anthracene‐9‐carboxylate sesquihydrate (TMPAC, 2:2:3), C14H19N4O3+·C15H9O2·1.5H2O, ( V ), pyrimethaminium [or 2,4‐diamino‐5‐(4‐chlorophenyl)‐6‐ethylpyrimidin‐1‐ium] 2,5‐dichlorothiophene‐3‐carboxylate (PMNDCTPC, 1:1), C12H14ClN4+·C5HCl2O2S, ( VI ), pyrimethaminium 5‐bromothiophene‐2‐carboxylate (PMNBTPC, 1:1), C12H14ClN4+·C5H2BrO2S, ( VII ), pyrimethaminium anthracene‐9‐carboxylate ethanol monosolvate monohydrate (PMNAC, 1:1:1:1), C12H14ClN4+·C15H9O2·C2H5OH·H2O, ( VIII ), and bis(pyrimethaminium) naphthalene‐1,5‐disulfonate (PMNNSA, 2:1), 2C12H14ClN4+·C10H6O6S22−, ( IX ), have been prepared and characterized by single‐crystal X‐ray diffraction. In all the crystal structures, the pyrimidine N1 atom is protonated. In salts ( I )–( III ) and ( VI )–( IX ), the 2‐aminopyrimidinium cation interacts with the corresponding anion via a pair of N—H…O hydrogen bonds, generating the robust R22(8) supramolecular heterosynthon. In salt ( IV ), instead of forming the R22(8) heterosynthon, the carboxylate group bridges two pyrimidinium cations via N—H…O hydrogen bonds. In salt ( V ), one of the carboxylate O atoms bridges the N1—H group and a 2‐amino H atom of the pyrimidinium cation to form a smaller R21(6) ring instead of the R22(8) ring. In salt ( IX ), the sulfonate O atoms mimic the role of carboxylate O atoms in forming an R22(8) ring motif. In salts ( II )–( IX ), the pyrimidinium cation forms base pairs via a pair of N—H…N hydrogen bonds, generating a ring motif [R22(8) homosynthon]. Compounds ( II ) and ( III ) are isomorphous. The quadruple DDAA (D = hydrogen‐bond donor and A = hydrogen‐bond acceptor) array is observed in ( I ). In salts ( II )–( IV ) and ( VI )–( IX ), quadruple DADA arrays are present. In salts ( VI ) and ( VII ), both DADA and DDAA arrays co‐exist. The crystal structures are further stabilized by π–π stacking interactions [in ( I ), ( V ) and ( VII )–( IX )], C—H…π interactions [in ( IV )–( V ) and ( VII )–( IX )], C—Br…π interactions [in ( II )] and C—Cl…π interactions [in ( I ), ( III ) and ( VI )]. Cl…O and Cl…Cl halogen‐bond interactions are present in ( I ) and ( VI ), with distances and angles of 3.0020 (18) and 3.5159 (16) Å, and 165.56 (10) and 154.81 (11)°, respectively.  相似文献   

19.
The hollow composite spheres with a raspberry‐like structure were prepared by a self‐assemble heterocoagulation based on the inter‐particle hydrogen‐bonding interaction between the amide groups of hollow poly (N,N′‐methylenebisacrylamide‐coN‐isopropyl acrylamide) (P(MBA‐co‐NIPAAm)) microspheres and the carboxylic acid groups of poly(ethyleneglycol dimethacrylate‐co‐methacrylic acid) (P(EGDMA‐co‐MAA)) nanoparticles, in which P(EGDMA‐co‐MAA) nanoparticle acted as the corona and the hollow P(MBA‐co‐NIPAAm) microsphere behaved as the core. The control coverage of the corona particles on the surface of hollow core microspheres of P(MBA‐co‐NIPAAm)/P(EGDMA‐co‐MAA) hollow composite sphere was studied in detail through adjustment of the mass ratio between the core and corona particles. The effect of the pH on the stability of the raspberry‐like hollow spheres was investigated. The polymer particles and the resultant heterocoagulated raspberry‐like hollow spheres were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Novel triblock copolymers having self‐complementary hydrogen‐bonding units were synthesized by using reversible addition–fragmentation transfer polymerization. As characterized by dynamic light scattering and atomic force microscopy, these polymers formed noncovalently crosslinked polymer particles and showed an aggregation behavior by intermolecular and intramolecular interactions. At low concentration, polymers formed nanoparticles, and the particle diameter increased with increasing polymer concentration. Well‐ordered hexagonal microstructures were prepared by “Breath Figure” technique with the triblock copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号