首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of the title compounds, viz. C24H14F2N2O2, (I), and C25H17FN2O2, (II), respectively, have been determined in order to unravel the role of an ordered F atom in generating stable supra­molecular assemblies. On changing the substitution from fluorine to a methyl group, C—H⋯F inter­actions are replaced by C—H⋯π inter­actions, revealing the importance of such weak inter­actions when present alongside N—H⋯O and C—H⋯O hydrogen bonds. The dihedral angle between the planes of the 4‐fluoro­phenyl ring and the pyridine ring is 26.8 (1)° in (I), while that between the planes of the 4‐methyl­phenyl and pyridine rings is 29.5 (1)° in (II).  相似文献   

2.
The crystal structures of the four E,Z,E isomers of 1‐(4‐alk­oxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, namely (E,Z,E)‐1‐(4‐methoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C19H17NO3, (E,Z,E)‐1‐(4‐ethoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C20H19NO3, (E,Z,E)‐1‐(4‐nitro­phen­yl)‐6‐(4‐n‐propoxyphen­yl)hexa‐1,3,5‐triene, C21H21NO3, and (E,Z,E)‐1‐(4‐n‐butoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C22H23NO3, have been determined. Inter­molecular N⋯O dipole inter­actions between the nitro groups are observed for the meth­oxy derivative, while for the eth­oxy derivative, two adjacent mol­ecules are linked at both ends through N⋯O dipole–dipole inter­actions between the N atom of the nitro group and the O atom of the eth­oxy group to form a supra­molecular ring‐like structure. In the crystal structures of the n‐prop­oxy and n‐but­oxy derivatives, the shortest inter­molecular distances are those between the two O atoms of the alk­oxy groups. Thus, the nearest two mol­ecules form an S‐shaped supra­molecular dimer in these crystal structures.  相似文献   

3.
The crystal structures of the title compounds, (C2N3H8)2[CuCl4], (I), and (C8H14N4)[CuCl4], (II), have been studied by X‐ray diffraction. The structures consist of discrete [CuCl4]2? anions with two monoprotonated (C2N3H8)+ cations for (I) and a diprotonated (C8N4H14)2+ cation for (II). The [CuCl4]2? anions of both compounds have flattened tetrahedral geometries. There are several N—H?Cl weak bonds that join the [CuCl4]2? anions and the organic cations helping retain the pseudo‐tetrahedral geometries of the anions.  相似文献   

4.
The crystal structure of the title compound, C12H7Br4N3, shows that the stereochemistry about the N=N double bond of the N=N—N(H) moiety is trans. The whole mol­ecule deviates slightly from planarity (r.m.s. deviation 0.164 Å). While one of the aryl substituents is almost coplanar with the triazene chain, weak intermolecular Br?C contacts cause the second aryl substituent to deviate by an angle of 9.1 (8)° from the plane defined by the N=N—N group. Weak intermolecular N—H?Br interactions between mol­ecules related by the diagonal glide plane give rise to chains, which are stacked along the [100] crystallographic direction. An unequal distribution of double‐bond character between the N atoms suggests a delocalization of π electrons over the diazo­amino group and the adjacent aryl groups.  相似文献   

5.
The structure of the title compound, C12H9N5O4, reveals an almost planar mol­ecule (r.m.s. deviation = 0.061 Å), in which the interplanar angle between the phenyl rings is 5.7 (1)° and the largest interplanar angle is that between the phenyl ring and the nitro group of one of the 4‐nitro­phenyl substituents [8.8 (3)°]. The observed mol­ecular conformation suggests a delocalization of π‐electrons extended over the diazo­amine group and the terminal aryl substituents. Intermolecular N—H⃛O interactions between the twofold screw‐related mol­ecules give rise to helical chains along the [010] direction. Intermolecular C—H⃛O interactions then generate sheets of mol­ecules in the (10) plane, and these sheets are held together by N⃛C and O⃛O π–π interactions.  相似文献   

6.
The title compound, C25H30NO2+·Cl, has been synthesized, and the crystal structure shows that it is mainly stabilized through inter­molecular N—H·Cl and O—H·Cl and intra­molecular N—H·O hydrogen bonds. The absolute configuration of the new stereogenic center (the C atom adjacent to the N atom on the phenol side) was determined to have an R configuration.  相似文献   

7.
The title compound, C20H18ClNOS2, is a thia­zole‐derived thio­hydroxamic acid O‐ester. The value of Z′ is 3 and the asymmetric unit comprises three mol­ecules of identical helicity along the N—O bond. Two of these show an anti and the third a syn arrangement of substituents attached in positions 3 and 4 to the 1,3‐thia­zole nucleus.  相似文献   

8.
The title compound, C21H23ClN4O2·0.5H2O, contains two independent mol­ecules in the asymmetric unit. In each mol­ecule the piperazine ring adopts a chair conformation; the deviations of the piperazine N atoms from the best plane through the remaining four C atoms are ?0.678 (3) and 0.662 (3) Å in mol­ecule A, and 0.687 (3) and ?0.700 (3) Å in mol­ecule B. The mol­ecules are linked by two hydrogen bonds of the O—H?N type involving the O atom of the water mol­ecule of crystallization.  相似文献   

9.
Two chemical isomers of 3‐nitro­benzotrifluoride, namely 1‐(4‐chloro­phenyl­sulfanyl)‐2‐nitro‐4‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (I), and 1‐(4‐chloro­phenyl­sulfanyl)‐4‐nitro‐2‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (II), have been prepared and their crystal structures determined with the specific purpose of forming a cocrystal of the two. The two compounds display a similar conformation, with dihedral angles between the benzene rings of 83.1 (1) and 76.2 (1)°, respectively, but (I) packs in P while (II) packs in P21/c, with C—H⋯O interactions. No cocrystal could be formed, and it is suggested that the C—H⋯O associations in (II) prevent intermolecular mixing and promote phase separation.  相似文献   

10.
In the crystal structure of the title compound {systematic name: bis­[6‐methyl‐1,2,3‐oxa­thia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]bis­(3‐meth­yl­pyridine)copper(II)}, [Cu(C4H4NO4S)2(C6H7N)2], the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and because of the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two methyl­pyridine ligands and by the more basic O atoms of the acesulfamate ligands, while the weakly basic N atoms of these ligands are in elongated axial positions with a misdirected valence. The crystal is stabilized by two inter­molecular C—H⋯O inter­actions involving the methyl and CH groups, and the sulfonyl O atoms of the acesulfamate group.  相似文献   

11.
The crystal structure of the title compound, C14H12N4O3, shows that the stereochemistry about the N=N double bond of the N=N—N(H) moiety is trans. The whole mol­ecule is almost planar (r.m.s. deviation = 0.0654 Å), the interplanar angle between the phenyl rings being 0.7 (1)° and the largest interplanar angle being that between the phenyl ring and the nitro group of the 4‐nitro­phenyl substituent [11.5 (2)°]. Intermolecular N—H⋯O interactions between mol­ecules related by translation give rise to chains along the [110] and [10] directions, and these chains are held together by N⋯O π–π interactions. An unequal distribution of the double‐bond character among the N atoms suggests a delocalization of π electrons over the diazo­amine group and the adjacent aryl substituents.  相似文献   

12.
In both of the title compounds, C23H19ClN2O, (I), and C23H18Cl2N2O, (II), the molecular packing is influenced by weak intermolecular C—H⋯O and C—H⋯π interactions, but despite the chemical similarity of the compounds, the packing in (II) is entirely different from that observed in (I).  相似文献   

13.
The structures of the two title isomeric compounds (systematic names: N‐meth­yl‐N,2‐dinitro­aniline and N‐meth­yl‐N,3‐di­nitro­aniline, both C7H7N3O4) are slightly different because they exhibit different steric hindrances and hydrogen‐bonding environments. The aromatic rings are planar. The –N(Me)NO2 and –NO2 groups are not coplanar with the rings. Comparison of the geometric parameters of the ortho, meta and para isomers together with those of N‐meth­yl‐N‐phenyl­nitramine suggests that the position of the nitro group has a strong influence on the aromatic ring distortion. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds to the nitramine group.  相似文献   

14.
The title compound, (C6H9N2)2[ZnIICl4], consists of two 2‐amino‐6‐methyl­pyridinium (AMP) cations and one [ZnCl4]2− anion, which are held together by N—H·Cl hydrogen bonds. Bond lengths within the AMP cation indicate that the imine tautomer makes a significant contribution to the structure. The mol­ecules are associated by two different π–π interactions between identical antiparallel AMP cations, with face‐to‐face distances of 3.627 (4) and 3.342 (3) Å, to form a one‐dimensional chain.  相似文献   

15.
In the title complex, (C6H11N2)3[LaCl6], centrosymmetric octahedral hexa­chloro­lanthanate anions are located at the corners and face‐centers of the monoclinic unit cell. The ring H atoms of the cations interact with the Cl atoms of the anions via hydrogen bonding, and bifurcation of the hydrogen bonding is observed. Cation–cation interactions via hydrogen bonding between the ring H atoms and π‐electrons of aromatic rings are also observed as in other imidazolium salts.  相似文献   

16.
The synthesis of novel triaryl‐substituted 4‐(isothiazol‐3‐yl)morpholines 7 and 8 , and 1‐(isothiazol‐3‐yl)piperazines 9 – 13 by reaction of the corresponding isothiazolium salts 5 and 6 with secondary amines in the presence of t‐BuOK in absolute THF is described. Some representatives of the isothiazoles were evaluated as inhibitors of acetylcholinesterase from Electrophorus electricus.  相似文献   

17.
We report the single crystal structures of 1,4‐bis­(triisopropyl­silyl)buta‐1,3‐diyne, C22H42Si2, and 1,4‐bis­(biphenyl‐4‐yl)buta‐1,3‐diyne, C28H18, the packing in both of which illustrates the versatility of weak C—H⋯π supra­molecular inter­actions in dictating the overall solid‐state structures.  相似文献   

18.
In the crystal structure of the title compound [systematic name: diaqua­bis(6‐methyl‐2,2‐dioxo‐1,2,3‐oxathia­zin‐4‐olato‐κO4)bis­(3‐methyl­pyridine‐κN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the NiII centre resides on a centre of symmetry and has a distorted octa­hedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans‐oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octa­hedron are occupied by two N atoms of two trans pyridine ligands. Mol­ecules are stacked in columns running along the a axis. There are π–π stacking inter­actions between the mol­ecules in each column, with a distance of 3.623 (2) Å between the centroids of the pyridine rings. There are also O—H⋯O inter­actions between the columns.  相似文献   

19.
The asymmetric unit of the title compound, [Ni2(C25H31N4O3)(C2H3O2)2]PF6·0.5H2O, consists of two dinuclear nickel cations, two hexa­fluoro­phosphate anions and one water mol­ecule of crystallization. Within each cation, the Ni atoms are bridged by two exogenous acetate groups and an endogenous cresol O atom of a phenolate‐based `end‐off' compartmental ligand that possesses two pendant chelating arms attached to the ortho positions of the phenol ring. Each Ni atom is six‐coordinate with a slightly distorted octa­hedral geometry. The two symmetry‐independent cations are linked into a dimeric unit through O—H⋯O hydrogen bonds. Additional O—H⋯O, C—H⋯F and C—H⋯O inter­molecular inter­actions link all of the units in the structure into a three‐dimensional framework.  相似文献   

20.
The structure of the title compound, C6H6OS, exhibits a flip‐type disorder of the thiophene ring [occupancy ratio = 0.848 (3):0.152 (3)], which is typical for many thiophene derivatives. The puckered thiophene ring is essentially coplanar with the plane formed by the non‐H atoms of the acetyl substituent, similar to its simple analogues, i.e. 3‐acetyl‐2‐carboxythiophene, 4‐acetyl‐3‐carboxythiophene and 3,5‐diacetyl‐2‐ethylamino‐4‐methylthiophene. In the crystal structure, molecules are connected by C—H...π hydrogen bonds, forming a sheet parallel to the (001) plane. Moreover, an inspection of the crystal lattice reveals that there are short S...O contacts connecting the molecules of adjacent sheets. Comparison of the title crystal structure with its simple 3‐methoxythiophene analogue shows a close similarity in the herringbone arrangement of molecules and in the presence of C—H...π interactions and S...O contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号