首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Room-temperature, high-pressure (1–30 atm) measurements of CO2 absorption are carried out near 2.7 μm to study line mixing and finite duration collision effects on transitions in the ν1+ν3 and 2ν2+ν3 vibrational bands. Two distributed feedback diode lasers are used to measure CO2 transitions near 3631–3635 cm?1 and 3644–3646 cm?1, and an FTIR spectrometer covers the entire ν1+ν3 and 2ν2+ν3 bands from 3500 to 3800 cm?1. The experiments are carried out in CO2–air and CO2–Ar mixtures to observe the non-ideal effects under the influence of different perturbers. Measurements are compared with simulations using the Voigt line shape to analyze the deviation from the Lorentzian behavior with increasing gas density, and show significant deviation from this model at high gas densities. Line shape models using empirical corrections or dynamically based scaling laws are evaluated by comparison to the measured high-density spectra. Although none of the models is able to predict the measured spectra accurately, the line mixing model of Niro et al. [24] does an overall good job but overestimates the band centers by about 4–9%. In light of these observations, challenges of developing a CO2 sensor for high-pressure combustion applications are discussed.  相似文献   

2.
Using a tunable diode-laser spectrometer, we have measured the self-broadening coefficients and strengths of 26 absorption lines in the ν3 ? ν1 band of 12CO2 and 13CO2 at room temperature. These lines, ranging from P(34) to R(40), are located around 960.9 and 913.4 cm?1, respectively for the 12CO2 and 13CO2 molecules. The collisional widths and the intensities were obtained by fitting Voigt and Rautian and Sobel’man profiles to the measured shapes of the lines. From the individual line intensities and using a least-squares method, we have determined the vibrational band strength as well as the Herman–Wallis factors for the ν3 ? ν1 band of 12CO2 and 13CO2.  相似文献   

3.
The absorption spectrum of the 16O3 isotopologue of ozone was recorded in the 7000–7920 cm?1 region by using high sensitivity CW-Cavity Ring Down Spectroscopy (αmin  10?10 cm?1). This report is devoted to the analysis of the 7300–7600 cm?1 region dominated by four A-type bands: 6ν1 + ν3 centred around 7395 cm?1, 3ν1 + 5ν2 + ν3 and 2ν1 + 4ν2 + 3ν3 lying in the 7450 cm?1 region and 5ν1 + 2ν2 + ν3 centred around 7579 cm?1. 213 transitions of the 6ν1 + ν3 band were assigned and the corresponding line positions were modeled using an effective Hamiltonian including a Coriolis resonance interaction between the (601) upper state and a A-type dark state. The two very close 3ν1 + 5ν2 + ν3 and 2ν1 + 4ν2 + 3ν3 bands were analysed using a similar effective Hamiltonian scheme involving the anharmonic resonance coupling between the (351) and (243) states. For these two bands, 304 transitions were assigned. The modelling also includes a first Coriolis resonance interaction between the (351) bright state and the (530) dark state, and a second one between the (243) bright state and the (144) dark state. In the 7579 cm?1 region, 205 transitions of the 5ν1 + 2ν2 + ν3 band were assigned and modelled taking into account the Coriolis resonance interactions between the (521) upper state and the (700), (342) and (280) dark states.The dipole transition moment parameters of the four analysed bands were determined by a least-squares fit to the measured line intensities. For the studied band systems, the effective Hamiltonian and transition moment operator parameters were used to generate line lists provided as Supplementary Materials.  相似文献   

4.
Fourier transform spectra of oxirane (ethylene oxide, c-C2H4O) have been recorded in the 730–1560 cm?1 (6.4–13.7 μm) spectral region using a Bruker IFS125HR spectrometer at a resolution of 0.0019 cm?1. A total of six vibration bands, ν15, ν12, ν5, ν3, ν10 and ν2, have been observed and analyzed. The corresponding upper state ro-vibrational levels were fit using Hamiltonian matrices accounting for various interactions. Satisfactory fits were obtained using the following polyads {151, 121, 51} and {101, 21} of interacting states. As a result, an accurate and extended set of Hamiltonian constants were obtained. The following band centers were derived: ν0 (ν15) = 808.13518(60) cm?1, ν0 (ν12) = 822.27955(37) cm?1, ν0 (ν5) = 876.72592(15), ν0 (ν3) = 1270.37032(10) cm?1, ν0 (ν10) = 1471.35580(50) cm?1 and ν0 (ν2) = 1497.83309(15) cm?1 where the uncertainties are one standard deviation.  相似文献   

5.
The absorption spectrum of the 18O3 isotopologue of ozone was recorded by CW-Cavity Ring Down Spectroscopy in the 6950–7125 cm?1 region. The typical noise equivalent absorption of the recordings is αmin ≈1×10?10 cm?1. The spectrum is dominated by three very weak bands: 3ν1+5ν3 near 7009 cm?1 and the ν2+7ν3 and 4ν2+5ν3 interacting bands near 7100 cm?1. In total 260, 206 and 133 transitions were assigned for the 3ν1+5ν3, ν2+7ν3 and 4ν2+5ν3 bands, respectively. The line positions of the 3ν1+5ν3 band were modelled using an effective Hamiltonian (EH) model involving two dark states – (6 0 1) and (2 5 2) – in interaction with the (3 0 5) bright state. The EH model developed for the ν2+7ν3 and 4ν2+5ν3 bands involves only the (0 1 7) and (0 4 5) interacting bright states. Line positions could be reproduced with rms deviations on the order of 0.01 cm?1 and the dipole transition moment parameters were determined for the three observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a list of 984 transitions of the three bands which is provided as Supplementary Material.  相似文献   

6.
High-resolution water vapor absorption spectra have been measured at room temperature in the 8800–11,600 cm?1 spectral region. They were obtained using the mobile BRUKER IFS 120M Fourier transform spectrometer (FTS) from ULB-SCQP coupled to the 50 m base long multiple reflection White type cell in GSMA laboratory. The absorption path was 600 m and different H2O/HDO/D2O mixtures were used. Measurements of line positions, intensities and self-broadening coefficients were performed for the HD16O isotopologue. 6464 rovibrational assignment of the observed lines was made on the basis of global variational predictions and allowed the identification of new energy levels. 3ν3, 2ν1+ν3, 3ν1+ν2, ν1+2ν3 and 2ν2+2ν3 are the five strongest bands. The present paper provides a complementary data set on water vapor for atmospheric and astrophysical applications.  相似文献   

7.
《Solid State Ionics》2006,177(37-38):3223-3231
Proton dynamics in (NH4)3H(SO4)2 has been studied by means of 1H solid-state NMR. The 1H magic-angle-spinning (MAS) NMR spectra were traced at room temperature (RT) and at Larmor frequency of 400.13 MHz. 1H static NMR spectra were measured at 200.13 MHz in the range of 135–490 K. 1H spin-lattice relaxation times, T1, were measured at 200.13 and 19.65 MHz in the ranges of 135–490 and 153–456 K, respectively. The 1H chemical shift for the acidic proton (14.7 ppm) indicates strong hydrogen bonds. In phase III, NH4+ reorientation takes place; one type of NH4+ ions reorients with an activation energy (Ea) of 14 kJ mol 1 and the inverse of a frequency factor (τ0) of 0.85 × 10 14 s. In phase II, a very fast local and anisotropic motion of the acidic protons takes place. NH4+ ions start to diffuse translationally, and no proton exchange is observed between NH4+ ions and the acidic protons. In phase I, both NH4+ ions and the acidic protons diffuse translationally. The acidic protons diffuse with parameters of Ea = 27 kJ mol 1 and τ0 = 4.2 × 10 13 s. The translational diffusion of the acidic protons is responsible for the macroscopic proton conductivity, as the NH4+ translational diffusion is slow and proton exchange between NH4+ ions and the acidic protons is negligible.  相似文献   

8.
《Solid State Ionics》2006,177(1-2):89-93
The differential scanning calorimetry diagram of [Li0.2(NH4)0.8]2TeCl6 showed one anomaly at 526 K accompanied with a shoulder at 505 K.The conductivity plot exhibits two anomalies at 496 and 526 K, which characterize the beginning and the end of the crossing to superionic conductor state. The low temperature conduction is ensured essentially by Li+. A sudden jump confirms the presence of a superionic protonic transition related to the fast motion of Li+ and H+ ions. Above 526 K, the high temperature phase is characterized by high electrical conductivity (10 3 Ω 1 m 1) and low activation energy (Ea < 0.3 eV).The dielectric constant evolution as a function of frequency and temperature revealed the same anomaly.Transport properties in this material appear to be due to Li+ and H+ ions' hopping mechanism.  相似文献   

9.
《Solid State Ionics》2006,177(1-2):95-104
The plastic crystal phase forming N-methyl-N-propylpyrrolidinium tetrafluoroborate organic salt (P13BF4) was combined with 2, 5 and 10 wt.% poly(vinyl pyrrolidone) (PVP). The ternary 2 wt.% PVP/2 wt.% LiBF4/P13BF4 was also investigated. Thermal analysis, conductivity, optical thermomicroscopy, and Nuclear Magnetic Resonance (11B, 19F, 1H, 7Li) were used to probe the fundamental transport processes. Both the onset of phase I and the final melting temperature were reduced with increasing additions of PVP. Conductivity in phase I was 2.6 × 10 4 S cm 1 5.2 × 10 4 S cm 1 1.1 × 10 4 S cm 1 and 3.9 × 10 5 S cm 1 for 0, 2, 5 and 10 wt.%PVP/P13BF4, respectively. Doping with 2 wt.% LiBF4 increased the conductivity by up to an order of magnitude in phase II. Further additions of 2 wt.% PVP slightly reduced the conductivity, although it remained higher than for pure P13BF4.  相似文献   

10.
《Solid State Ionics》2006,177(9-10):885-892
Tri block-copolymer poly(iminoethylene)-b-poly(oxyethylene)-b-poly(iminoethylene) with a poly(oxyethylene) central block (PEI-b-PEO-b-PEI) were used as a “dual” matrix for polymer electrolytes having selectivity for hard cations (Li+/PEO) in one phase and for soft cations (Cu2+/PEI) in the other. Conductivity measurements were recorded for 20:1, 12:1 and 8:1 coordinating atom (O or/and N) to cation (Li+, Cu2+) ratios, for each of the three complexes studied: PEI-b-PEO-LiTFSI-b-PEI, PEI-Cu(TFSI)2-b-PEO-b-PEI-Cu(TFSI)2 and PEI-Cu(TFSI)2-b-PEO-LiTFSI-b-PEI-Cu(TFSI)2. For either low (20 °C) or high temperature (80 °C) the highest conductivity was given by the polymer electrolyte based on Cu(TFSI)2 with N/Cu2+ = 20:1 (10 6, respectively 2 × 10 4 S cm 1). In the present paper, the conductivity evolution is discussed in relation with the polymer structure, the type and the concentration of the salt and the thermal behavior of our systems.  相似文献   

11.
The hot band 3ν9?ν9 of the isotopologue 11BF2OH (difluoroboric acid) located at 1034.78 cm?1 was investigated for the first time by Fourier transform infrared spectroscopy. During previous studies both, the ν9 mode (OH-torsion relative to the BF2 moiety, at 522.87 cm?1) and the ν4 mode (in-plane OH bend) had been shown to exert large amplitude motion, and splittings of 0.0051 and 0.0038 cm?1 had been observed in the interacting 2ν9 and ν4 bands located at 1042.87 and 961.49 cm?1, respectively. The present work establishes large amplitude effects also for the 93 excited state located at 1557.655 cm?1. Numerous P and R transitions of the 3ν9ν9 hot band were identified in the 2ν9 manifold, and doublets corresponding to a torsional splitting of 0.031 cm?1 in the 93 state were observed. The vibrational assignment of the 93 state was confirmed by the detection of the 3ν9?2ν9 hot band Q branch in the 19 μm region.  相似文献   

12.
《Solid State Ionics》2006,177(26-32):2407-2411
Electrical conduction of Sr-doped LaP3O9 ([Sr]/{[La] + [Sr]} = 2–10 mol%) was investigated under 0.4–5 kPa of p(H2O) and 0.01–100 kPa of p(O2) or 0.3–3 kPa of p(H2) at 573–973 K. Sr-doped LaP3O9 showed apparent H/D isotope effect on conductivity regardless of the Sr-doping level under both H2O/O2 oxidizing and H2/H2O reducing conditions at investigated temperatures. Conductivities of the material were almost independent of p(O2) and p(H2O). These results demonstrated that the Sr-doped LaP3O9 exhibited protonic conduction under wide ranges of p(O2), p(H2O) and temperature. The conductivity of the Sr-doped LaP3O9 increased with increasing Sr concentration up to its solubility limit, ca. 3 mol%, while the further Sr-doping slightly degraded the conductivity. These indicate that Sr2+ substitution for La3+ leads to proton dissolution into the material and induced protonic conduction. Conductivities of the 3 mol% Sr-doped sample were 2 × 10- 6–5 × 10 4 S cm 1 at 573–973 K.  相似文献   

13.
《Solid State Ionics》2006,177(19-25):1747-1752
Oxygen tracer diffusion coefficient (D) and surface exchange coefficient (k) have been measured for (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ using isotopic exchange and depth profiling by secondary ion mass spectrometry technique as a function of temperature (700–1000 °C) in dry oxygen and in a water vapour-forming gas mixture. The typical values of D under oxidising and reducing conditions at ∼ 1000 °C are 4 × 10 10 cm2 s 1 and 3 × 10 8 cm2 s 1 respectively, whereas the values of k under oxidising and reducing conditions at ∼ 1000 °C are 5 × 10 8 cm s 1 and 4 × 10 8 cm s 1 respectively. The apparent activation energies for D in oxidising and reducing conditions are 0.8 eV and 1.9 eV respectively.  相似文献   

14.
《Current Applied Physics》2010,10(3):813-816
Ag films were deposited on Al-doped ZnO (AZO) films and coated with AZO to fabricate AZO/Ag/AZO multilayer films by DC magnetron sputtering on glass substrates without heating of glass substrates. The best multilayer films have low sheet resistance of 19.8 Ω/Sq and average transmittance values of 61% in visible region. It was found that the highest figure of merit (FTC) is 6.9 × 10−4 Ω−1. For the dye-sensitized solar cell (DSSC) application, the multilayer films were used as transparent conductive electrode (multilayer films/ZnO + Eosin-Y/LiI + I2/Pt/FTO). The best DSSC based on the multilayer films showed that open circuit voltage (Voc) of 0.47 V, short circuit current density (Jsc) of 2.24 mA/cm2, fill factor (FF) of 0.58 and incident photon-to-current conversion efficiency (η) of 0.61%. It was shown that the AZO/Ag/AZO multilayer films have potential for application in DSSC.  相似文献   

15.
The Fourier transform infrared (FTIR) spectrum of the ν6 band of ethylene-cis-d2(cis-C2H2D2) was recorded with a unapodized resolution of 0.0063 cm?1 in the 990–1100 cm?1 region. A total of 609 transitions were assigned to this band centred at 1039.7682 ± 0.0003 cm?1. The ν6 band was found to be coupled to the ν4 band by a-type Coriolis resonance. Both perturbed and unperturbed transitions were assigned and fitted to give eight rovibrational constants with high accuracy for the v6 = 1 state with a standard deviation of 0.00097 cm?1 using a Watson’s A-reduced Hamiltonian in the Ir representation. From a rovibrational analysis of the Coriolis interaction between the ν6 band and non-infrared active ν4 band of cis-C2H2D2, the band centre of ν4 at 984.9 ± 0.2 cm?1 was derived. Furthermore, the second-order a-type Coriolis coupling constant between the two bands was obtained for the first time.  相似文献   

16.
《Current Applied Physics》2010,10(4):990-996
This study examined the effects of Ga content in the CIGS absorber layer on the properties of the corresponding thin films and solar cells fabricated using a co-evaporation technique. The grain size of CIGS films decreased with increasing Ga content presumably because Ga diffusion during the 2nd stage of the co-evaporation process is more difficult than In diffusion. The main XRD peaks showed a noticeable shift to higher diffraction angles with increasing Ga content, which was attributed to Ga atoms substituting for In atoms in the chalcopyrite structure. Band gap energy and the net carrier concentration of CIGS films increased with Ga/(In + Ga) ratios. Regarding the solar cell parameters, the short circuit current density (JSC) decreased linearly with Ga/(In + Ga) ratios due to the lack of absorption in the long-wavelength portion of the spectrum, while the open circuit voltage (VOC) increase with those. However, VOC values at high Ga/(In + Ga) regions (>0.35) was far below than those extrapolated from the low Ga contents regions, finally resulting in an optimum Ga/(In + Ga) ratio of 0.28 where the solar cell showed the highest efficiency of 15.56% with VOC, JSC and FF of 0.625 V, 35.03 mA cm−2 and 0.71, respectively.  相似文献   

17.
Sonodynamic therapy (SDT) is a new treatment modality using ultrasound to activate certain chemical sensitizers for cancer therapy. In this study, effects of high intensity focused ultrasound (HIFU) combined with photocatalytic titanium dioxide (TiO2) nanoparticles on human oral squamous cell line HSC-2 were investigated. Viability of HSC-2 cells after 0, 0.1, 1, or 3 s of HIFU irradiation with 20, 32, 55 and 73 W cm−2 intensities in the presence or absence of TiO2 was measured immediately after the exposures in vitro. Immediate effects of HIFU (3 s, 73 W cm−2) combined with TiO2 on solid tumors were also examined by histological study. Cytotoxic effect of HIFU + TiO2 in vitro was significantly higher than that of TiO2 or HIFU alone with the tendency to increase for higher HIFU intensity, duration, and TiO2 concentration in the suspension. In vivo results showed significant necrosis and tissue damage in HIFU and HIFU + TiO2 treated samples. However, penetration of TiO2 nanoparticles into the cell cytoplasm was only observed in HIFU + TiO2 treated tissues. In this study, our findings provide a rational basis for the development of an effective HIFU based sonodynamic activation method. This approach offers an attractive non-invasive therapy technique for oral cancer in future.  相似文献   

18.
Hydrogen peroxide (H2O2) and hydroperoxy (HO2) reactions present in the H2O2 thermal decomposition system are important in combustion kinetics. H2O2 thermal decomposition has been studied behind reflected shock waves using H2O and OH diagnostics in previous studies (Hong et al. (2009) [9] and Hong et al. (2010) [6,8]) to determine the rate constants of two major reactions: H2O2 + M  2OH + M (k1) and OH + H2O2  H2O + HO2 (k2). With the addition of a third diagnostic for HO2 at 227 nm, the H2O2 thermal decomposition system can be comprehensively characterized for the first time. Specifically, the rate constants of two remaining major reactions in the system, OH + HO2  H2O + O2 (k3) and HO2 + HO2  H2O2 + O2 (k4) can be determined with high-fidelity.No strong temperature dependency was found between 1072 and 1283 K for the rate constant of OH + HO2  H2O + O2, which can be expressed by the combination of two Arrhenius forms: k3 = 7.0 × 1012 exp(550/T) + 4.5 × 1014 exp(?5500/T) [cm3 mol?1 s?1]. The rate constants of reaction HO2 + HO2  H2O2 + O2 determined agree very well with those reported by Kappel et al. (2002) [5]; the recommendation therefore remains unchanged: k4 = 1.0 × 1014 exp(?5556/T) + 1.9 × 1011+exp(709/T) [cm3 mol?1 s?1]. All the tests were performed near 1.7 atm.  相似文献   

19.
20.
《Solid State Ionics》2006,177(3-4):333-341
A study of LiFePO4-based electrodes prepared through various synthesis conditions is presented. From X-Ray diffraction, high resolution transmission electron microscopy, electrochemical Li+ extraction/insertion and electrical conductivity data we conclude that the use of starting precursors such as Li2CO3, FeC2O4·2H2O and/or Nb(OC6H5)5 produces LiFePO4-based composites containing significant amounts of carbon. We never succeeded in doping LiFePO4 with Nb to yield Li1−xNbxFePO4 but produced, instead, crystalline β-NbOPO4 and/or an amorphous (Nb, Fe, C, O, P) “cobweb” around LiFePO4 particles which is responsible for superior electrochemical activity. AC-conductivity measurements conclude to a total electrical conductivity of ∼10 9 S cm 1 at 25 °C with an activation energy of ca. 0.65 eV for pure LiFePO4 and LiFePO4/β-NbOPO4 composites. C-containing LiFePO4 samples, including those that were tentatively but unsuccessfully doped with Nb, are much more conductive (up to 1.6 · 10 1 S cm 1) with an activation energy ΔE∼0.08 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号