首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron/hole trapped centres created during internal irradiation in239Pu doped K2Ca2(SO4)3 were investigated using electron paramagnetic resonance (EPR), thermally stimulated luminescence (TSL) and photoacoustic spectroscopic studies (PAS). These techniques were used to identify the defects and characterize the thermally induced relaxation processes. TSL studies of self (α)/γ-irradiated239Pu doped K2Ca2(SO4)3 revealed two glow peaks around 400 and 433K. Plutonium introduced as Pu4+ was partly reduced to Pu3+ due to self irradiation. This was ascertained from PAS studies. EPR studies carried out on these samples showed the formation of radical ions SO 4 , SO 3 , O 3 , etc. The thermal destruction of SO 4 ion was found to be associated with the prominent glow peak around 433K. Pu3+ was found to act as luminescent centre for the observed TSL glow. The trap depth for the glow peak at 433K has been determined from TSL and EPR data.  相似文献   

2.
Doping of MgO single crystals with Be results in the formation of numerous Be-containing paramagnetic centres, easily detectable by EPR, and creates an intensive luminescence band at 6.2 eV, observable at T<200 K, and gives rise to new thermoluminescence peaks at 147 and 190 K. A paramagnetic centre with a rhombic symmetry that decays at 160 K was identified as a [Be]+ (i.e. O–Be2+) centre—a hole trapped by O2− lattice ion near a Be2+ perturbing defect. The luminescence excitation and isochronal annealing studies led to the conclusion that the 6.2 eV luminescence arises at the radiative decay of electron excitations near Be2+. These excitations can be created at the recombination of electrons with the holes localised in the [Be]+ centres, at the recombination of holes with the electrons trapped in the Be1+ centre or at a direct excitation of oxygen near the Be2+ ion.  相似文献   

3.
In this work, the Ce3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd2O3:10CaO:10SiO2:(55−x)B2O3:xCeF3, have been fabricated by using the melt-quenching technique. The doping concentration of the Ce3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce3+ doped glass scintillator.  相似文献   

4.
The effect of temperature on the spectral luminescence characteristics of PbWO4:Tb3+ crystals with synchrotron and laser excitation is studied. If PbWO4:Tb3+ is excited by synchrotron radiation with λ = 88 nm at 300 K, a faint recombination luminescence of the impurity terbium is observed against the matrix luminescence. When the temperature is reduced to 8 K, the luminescence intensity of PbWO4:Tb3+ increases by roughly an order of magnitude and the characteristic luminescence of the unactivated crystal is observed. Excitation of PbWO4:Tb3+ by a nitrogen laser at 300 K leads to the appearance of emission from Tb3+ ions. At 90 K, a faint matrix luminescence is observed in addition to the activator emission. The formation of the luminescence excitation spectra for wavelengths of 60–320 nm is analyzed and the nature of the emission bands is discussed.  相似文献   

5.
Magnesium aluminate doped with Tb3+ (MgAl2O4:Tb3+) was prepared by combustion synthesis. Three thermoluminsence (TL) peaks at 120, 220 and 340 °C were observed. PL and TL emission spectrum shows that Tb3+ acts as the luminescent centre. Optically stimulated luminescence (OSL) was observed when stimulated by 470 nm blue light.Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the TL and OSL processes in MgAl2O4:Tb3+. Two defect centres were identified in irradiated MgAl2O4:Tb3+ phosphor by ESR measurements which was carried out at room temperature and these were assigned to V and F+ centres. V centre (hole centre) is correlated to 120 and 220 °C TL peaks and F+ centre (electron centre), which acts as a recombination centre is correlated to 120, 220 and 340 °C.  相似文献   

6.
Photoluminescence properties of thenardite activated with Eu   总被引:1,自引:0,他引:1  
Na2SO4:Eu phosphors were prepared by heating pure natural thenardite with EuF3 at 900 °C for 20 min in air. The photoluminescence (PL) and excitation spectra of as-prepared and γ-ray-irradiated phosphors were observed at 300 K. The PL spectrum under 394 nm excitation consisted of strong narrow bands with peaks at 579, 592, 616, 652, 697 and 741 nm, assigned to the 5D07FJ (J=0, 1, 2, …, 5) transitions, respectively, within Eu3+. The PL spectrum under 340 nm excitation consisted of a broad Eu2+ band with a peak at 435 nm. The excitation spectrum obtained by monitoring the violet luminescence consisted of a weak band with a peak at approximately 261 nm and a broad Eu2+ band with a peak at approximately 338 nm. The relative efficiency of the violet luminescence of the γ-ray-irradiated phosphor at the exposure of 46 kGy increased up to 3.0 times that of the unirradiated phosphor. The enhancement of violet luminescence by γ-ray irradiation was ascribed to the conversion of Eu3+ to Eu2+ in Na2SO4.  相似文献   

7.
Red persistent luminescent diopside nanoparticles doped with Mn2+ and codoped with RE3+ (Eu2+, Dy3+) have been obtained by sol-gel method. The influence of codoping rare earth ions on the persistent luminescence was studied by wavelength-resolved thermally stimulated luminescence (TSL) measurements from 30 to 650 K after X-ray irradiation. From these first results, a mechanism of persistent luminescence is proposed. In this mechanism Mn2+ and Eu2+ act as TSL recombination centers, Mn3+ and Eu3+ being stable hole centers, whereas Dy3+ acts as a good electron trap giving rise to a TSL peak at high temperature. Finally, persistent luminescence was measured. Intensity and persistence of the red luminescence of CaMgSi2O6: Mn2+–Dy3+ are better than those of CaMgSi2O6: Mn2+ and CaMgSi2O6: Mn2+–Eu2+, which are in agreement with the results of TSL.  相似文献   

8.
LiMgPO4:Tb3+ phosphor was synthesized by solid state reaction. The thermally stimulated luminescence (TSL) glow curve of Tb doped LiMgPO4 exhibits a main TSL peak at 170 °C with shoulders at 100 and 260 °C on either side of this peak. The TSL sensitivity of the phosphor was found to be about 2.5 times that of CaSO4:Dy phosphor. TSL emission and photoluminescence (PL) studies show that Tb3+ ion acts as luminescence centre in this phosphor. The kinetic parameters, namely activation energy (E) and frequency factor (s) associated with the main glow peak have been determined using peak shape method. The activation energy and frequency factor obtained are 1.35 ± 0.03 eV and (6.53 ± 0.43) × 1014 s?1 respectively. The paper discusses the dosimetric characteristics like dose response, fading, energy response and minimum detectable dose and results thereof.  相似文献   

9.
YAG phosphor powders doped/codoped with Er3+/(Er3+ + Yb3+) have been synthesised by using the solution combustion method. The effect of direct pumping into the 4I11/2 level under 980 nm excitation of doped/codoped Er3+/Yb3+−Er3+ in Y3Al5O12 (YAG) phosphor responsible for an infrared (IR) emission peaking at ∼1.53 μm corresponding to the 4I13/24I15/2 transition has been studied. YAG exhibits three thermally-stimulated luminescence (TSL) peaks at around 140°C, 210°C and 445°C. Electron spin resonance (ESR) studies were carried out to identify the centres responsible for the TSL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0176 is identified as O ion, while centre II with an isotropic g-factor 2.0020 is assigned to an F+ centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal-annealing experiments and this centre (assigned to F+ centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and these two centres appear to correlate with the observed high-temperature TSL peak in YAG phosphor.  相似文献   

10.
The optical properties of SrSi2O2N2 doped with divalent Eu2+ and Yb2+ are investigated. The Eu2+ doped material shows efficient green emission peaking at around 540 nm that is consistent with 4f7→4f65d transitions of Eu2+. Due to the high quantum yield (90%) and high quenching temperature (>500 K) of luminescence, SrSi2O2N2:Eu2+ is a promising material for application in phosphor conversion LEDs. The Yb2+ luminescence is markedly different from Eu2+ and is characterized by a larger Stokes shift and a lower quenching temperature. The anomalous luminescence properties are ascribed to impurity trapped exciton emission. Based on temperature and time dependent luminescence measurements, a schematic energy level diagram is derived for both Eu2+ and Yb2+ relative to the valence and conduction bands of the oxonitridosilicate host material.  相似文献   

11.
Optical spectra (absorption, emission, excitation, decay) and dielectric relaxation were measured for divalent europium and partially for ytterbium in lanthanum fluoride crystals. Optical absorption of LaF3–Eu2+ contains not only asymmetric weakly structured band at 245 nm but also less intense bands at 330, 380 nm. Broadband Eu2+ emission at 600 nm appeared below 80 K with decay time 2.2 μs at 7.5 K. Emission at 600 nm is attributed to so-called anomalous luminescence. Bulk conductivity is directly proportional to absorption coefficient of Eu2+ bands. Dielectric relaxation peak of LaF3–EuF3 is attributed to rotation of dipoles Eu2+-anion vacancy. The long-wavelength absorption at 300–400 nm region are assigned to transitions from 4f7Eu2+ ground state to states of neighbouring fluorine vacancy.  相似文献   

12.
A new long afterglow phosphor Y2O2S:Ti4+, Mg2+ co-doped with Gd3+ and Lu3+ was synthesized by solid-state reaction in inert gas ambient. Its properties were systematically analyzed by X-ray diffraction (XRD), luminescence spectra, afterglow decay curves and thermoluminescence (TL) spectra. It was found that the long afterglow performance of Y2O2S:Ti4+, Mg2+ such as brightness and persistent time was largely improved when co-doped with Gd3+ and Lu3+. By analyzing the TL curve the activation energy E were calculated to be 0.64 eV for 388 K peak and 0.98 eV for 508 K peak, and the trap intensity related to 388 K peak is much stronger than that related to 508 K peak. The mechanism of the long afterglow was also discussed in this paper.  相似文献   

13.
Temperature dependent luminescence and luminescence lifetime measurements are reported for nanocrystalline ZnS:Cu2+ particles. Based on the variation of the emission wavelength as a function of particle size (between 3.1 and 7.4 nm) and the low quenching temperature (Tq=135 K), the green emission band is assigned to recombination of an electron in a shallow trap and Cu2+. The reduction in lifetime of the green emission (from 20 μs at 4 K to 0.5 μs at 300 K) follows the temperature quenching of the emission. In addition to the green luminescence, a red emission band, previously only reported for bulk ZnS:Cu2+, is observed. The red emission is assigned to recombination of a deeply trapped electron and Cu2+. The lifetime of the red emission is longer (about 40 μs at 4 K) and the quenching temperature is higher.  相似文献   

14.
A study of recombination kinetics in LiB3O5 (LBO) crystals by time-resolved luminescence and absorption spectroscopy is reported. An investigation of the kinetics of transient optical absorption (TOA) and luminescence under ns-scale electron-beam excitation performed within a broad temperature range of 77–500 K and a 1.2–5-eV spectral interval has established that the specific features in the recombination kinetics observed in LBO involve electronic, B2+, and hole, O, trapping centers. The TOA and luminescence kinetics, as well as their temperature dependence, are interpreted by a model of competing hole centers. Relations connecting the kinetics parameters and the temperature dependence to the parameters of the main LBO point defects are presented. Fiz. Tverd. Tela (St. Petersburg) 40, 2008–2014 (November 1998)  相似文献   

15.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

16.
The series of divalent samarium substituted strontium tetraborate (Sr1?xSmxB4O7) polycrystalline samples were prepared by the conventional solid-state reaction. The phase formation of the samples was investigated by X-ray powder diffraction measurements. The luminescence spectra and decay curves of the Sm2+ ions were measured. Temperature dependent Sm2+ luminescence properties were investigated. The f–d and 5D17FJ transitions appeared at 350 K and increased with increase in the temperature while the intensity of 5D07FJ transitions decreased. The emission spectra pointed out that Sm2+ occupies of C2v or lower symmetry site. The photoluminescence decay times of strontium tetraborate doped with different concentrations of Sm2+ was investigated as a function of temperature in the range of 100–500 K. However, no obvious concentration quenching was observed.  相似文献   

17.
The properties of the majority trapped-hole centers in MgO, such as g-factors, positions of absorption and luminescence bands, and temperatures of thermal destruction, have been analyzed with the emphasis on the observed regular trends and interrelations between the properties of these centers. Particular emphasis has been placed on the positively charged [Be]+ and [Ca]+ trapped-hole centers, which have a large cross section for recombination with conduction electrons. In these centers, a hole is localized at an oxygen ion near the impurity Be2+ or Ca2+ ion located at a regular cation site. The generation and transformation of defects due to the recombination of either relaxed conduction electrons with OH-containing hole centers or cold and hot electrons with [Be]+ and [Ca]+ centers have been considered. Using the interrelation of the characteristics of hole centers and taking into account that the recombination emission band revealed at ∼6.8 eV is due to the Ca2+-containing centers that are stable below 50 K, the prospects for the EPR detection of the [Ca]+ center at T < 4.2 K have been discussed.  相似文献   

18.
Interest in the Ga-site acceptors Be and Mg was stimulated by the possibility that they might produce efficient luminescence on association with O, analogous to the well-known red Zn-O luminescence in GaP but at higher transition energy. Attention was directed to diffusion doping by Be and Mg of GaP O-doped during growth because the reactivity of Be and Mg with O renders double doping during crystal growth very difficult. Structured green donor-acceptor pair spectra were observed at 1.6°K from many Be-diffused crystals, yielding an accurate measure of (EA)BE, 50 ± 1 meV. Moderately efficient orange-red luminescence was also observed below ∼ 100 °K from these crystals, but the intensity of this luminescence decreased rapidly to negligible levels by ∼ 200°K. This luminescence also contains sharp structure at 1.6°K, of a form characteristic of the decay of excitons bound to complex centres. Many sharp phonon replicas occur, involving local modes as well as characteristic GaP modes. One set of no-phonon lines, at least, near 2.19 eV, shows zero-field splitting, luminescence decay times and behaviour in magnetic and external strain fields characteristic of exciton decay at a centre with <100>; or <111>-type symmetry axes, containing no extra electronic particles. The exciton state is split by 2.4 meV by J-J coupling, and the axial field of the centre splits the hole states by ∼ 1.0 meV. These bound excitons are specifically characteristics of diffused GaP and appear analogous to bound excitons observed below 2.12 eV in Zn-diffused GaP. It is probable that the relevant centres contain diffusion components such as Be or Zn interstitials and improbable that OP is involved. By contrast, weak orange bound exciton luminescence observed in Mg-diffused GaP does involve O, presumably as OP. No analysis of the magneto-optical behaviour of this Mg-related bound exciton was possible in our crystals, so its symmetry axis was not established. It is possible that this is the MgGa-OP bound exciton. If so, the two-fold reductions in the exciton localisation energy from ∼ 0.32 eV to ∼ 0.15 eV and in the mass of the Ga-site substituent has produced dramatic changes in the form of the phonon cooperation between the Zn-O and “Mg-O” excitons. The “Mg-O” exciton luminescence is not dominant in our crystals, even at low temperature. The exciton state is again split by a local crystal field as well as by J-J coupling, but here the former splitting is predominant; 2∈0 = 3.9 meV, Δ = 0.60 meV.  相似文献   

19.
Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermoluminescence (TL) and optically stimulated luminescence (OSL) processes in BeO phosphor. Two defect centres were identified in irradiated BeO phosphor by ESR measurements, which were carried out at room temperature and these were assigned to an O ion and Al2+ centre. The O ion (hole centre) correlates with the main 190 °C TL peak. The Al2+ centre (electron centre), which acts as a recombination centre, also correlates to the 190 °C TL peak. A third centre, observed during thermal annealing studies, is assigned to an O ion and is related to the high temperature TL at 317 °C. This centre also appears to be responsible for the observed OSL process in BeO phosphor.  相似文献   

20.
Tricalcium aluminate doped with Eu3+ was prepared at furnace temperatures as low as 500°C by using the convenient combustion route and examined using powder X-ray diffraction, scanning electron microscope and photoluminescence techniques. A room-temperature photoluminescence study showed that the phosphors can be efficiently excited by UV/Visible region, emitting a red light with a peak wavelength of 616 nm corresponding to the 5D07F2 transition of Eu3+ ions. The phosphor exhibits three thermoluminescence (TL) peaks at 195°C, 325°C and 390°C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the TL process. Room-temperature ESR spectrum of irradiated phosphor appears to be a superposition of three distinct centres. One of the centres (centre I) with principal g-value 2.0130 is identified as O ion while centre II with an axially symmetric principal values g =2.0030 and g =2.0072 is assigned to an F+ centre (singly ionized oxygen vacancy). O ion (hole centre) correlates with the TL peak at 195°C and the F+ centre (electron centre), which acts as a recombination centre, is also correlated to the 195°C TL peak. F+ centre further appears to be related to the high temperature peak at 390°C. Centre III is also assigned to an F+ centre and seems to be the recombination centre for the TL peak at 325°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号