首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ns2-type metal elements (Pb and Sn) doped LiCaAlF6 single crystals were grown by a micro-pulling-down (μ-PD) method. Pb doped LiCaAlF6 [Pb:LiCAF] crystals showed high transparency and single phase of the LiCAF structure. However, we could not obtain Sn:LiCAF crystals due to the evaporation of SnF2 during the crystal growth. There was an absorption peak around 193 nm in the transmittance spectrum of Pb:LiCAF crystal. In the radioluminescence spectrum of the Pb:LiCAF crystal under X-ray irradiation, two emission peaks around 200 and 830 nm were observed.  相似文献   

2.
Eu and Rb co-doped LiCaAlF6 (LiCAF) single crystals with different dopant concentrations were grown by the micro-pulling-down method for neutron detection. Their transmittance spectra showed strong absorption bands at 200–220 and 290–350 nm, and under 241Am alpha-ray excitation, their radioluminescence spectra exhibited an intense emission peak at 373 nm that was attributed to the Eu2+ 5d–4f transition. These results were consistent with those for the Rb-free Eu:LiCAF. The highest light yield among the grown crystals was 36,000 ph/n, which was 20% greater than that of the Rb-free crystal. In addition, the neutron-excited scintillation decay times were 650–750 ns slower than that of the Rb-free Eu:LiCAF.  相似文献   

3.
High scintillation efficiency of Eu-doped LiSrAlF6 (LiSAF) and LiCaAlF6 (LiCAF) codoped with alkali metal ions has been reported in our recent studies. Thus in this paper, we demonstrated the scintillation properties of 1% Ce-doped LiSAF crystals with 1% alkali metal ions co-doping to increase the light yield and understand the scintillation mechanism. The crystals showed intense emission band corresponding to the 5d-4f transition of Ce3+, and their light yields under thermal neutron excitation were higher than that of the Ce only doped crystal. Especially, the light yield of Ce–Na co-doped crystal exceeded about two times that of Ce only doped one.  相似文献   

4.
LiCaAlF6 (LiCAF) crystals doped with two different ions (europium and lead) have been investigated as potential new dosimetric materials. The stability of thermally stimulated luminescence (TSL) glow peaks in LiCAF:Eu was evaluated by means of the initial rise technique. The decay times at room temperature of the traps related to the dosimetric glow peaks were found to range between 40 and 2 × 104 years confirming the good dosimetric characteristics of this crystal. The glow curve of LiCAF:Pb is dominated by a peak at approximately 300 °C emitting in the UV region (3P0,11S0 transition of Pb2+) superimposed to a very broad structure at lower temperature (20–200 °C) featuring recombination at an intrinsic defect centre. The anomalous behavior of the low temperature structure during thermal cleaning procedures prevented any reliable numerical analysis of the TSL glow peak at 300 °C.  相似文献   

5.
Photoluminescence (PL) and radioluminescence (RL) measurements were made on RbMgF3 nanoparticles doped with Mn or Eu. We find that the Mn doped samples contain only Mn2+ and the Eu doped samples contained Eu3+ and Eu2+. The Mn2+ PL lifetimes are nearly independent of Mn2+ concentration but the RL spectra increases at high doses for 1% Mn2+ and decreases slightly at high doses for 5% Mn2+. The 5% Mn2+ is more radiation hard and the integrated RL intensity only starts to significantly decrease above 1 kGy. The Eu doped sample displays a PL lifetime that is lower for high Eu concentrations and this can be accounted for by a model where there is energy transfer between Eu3+ and more nonradiative decay sites at the surface. The RL is independent of dose between 10 mGy and ∼200 Gy, where the 1% Eu sample is more radiation hard and the Eu3+ RL intensity has decreased by only 3.4% at 6.7 kGy.  相似文献   

6.
A convenient method for preparation of pure and doped yttrium oxide was developed, which is based on irradiation of solutions containing yttrium nitrate and ammonium formate with UV light or accelerated electrons. Solid phase formed under irradiation was consequently calcined at 500?°C or higher temperatures to obtain nanocrystalline yttrium oxide. Addition of small amount of cerium(III) or europium(III) nitrates to irradiated solutions resulted in doping of yttrium oxide with Ce(III) or Eu(III) ions. Under both types of irradiation, the method yields material with high specific surface area, consisting of spherical nanoparticles 25?C100?nm in diameter depending on preparative conditions and post-radiation treatment and with narrow size distribution. In the doped oxides (Y2O3:Ce or Y2O3:Eu), radioluminescence spectra typical for Ce3+ or Eu3+ doped oxide structures were observed.  相似文献   

7.
High silica glass doped with Eu2+ ions was prepared as a scintillating material by impregnation of Eu ions into a porous silica glass followed by reduction sintering in CO atmosphere. A dominant emission band of the Eu2+ 5d–4f transition peaking around 430 nm was observed in the luminescence spectrum with the excitation peak around 280 nm and no emission from Eu3+ was present. Photoluminescence decay kinetics was governed by decay times of a few microseconds. The Eu2+‐doped high silica glass exhibited comparable energy resolution and slightly higher photoelectron yield with respect to the Bi4Ge3O12 crystal in the pulse height spectra for X‐ray photon energies within 22–60 keV. Furthermore, a factor of 1.2 higher radioluminescence intensity was observed as well. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The crystals of Tm doped and Tm-Sc co-doped Lu3Al5O12 (LuAG) grown by the floating zone (FZ) method were examined for their optical and scintillation properties. In transmittance spectra, strong absorption lines due to Tm3+ 4f–4f transitions were observed. X-ray excited radioluminescence spectra were measured and broad and sharp emission peaks were detected. The former one was attributed to Sc3+ and the latter one was due to Tm3+ 4f–4f transitions. Scintillation yield enhancement due to Sc co-doping was observed by means of 137Cs pulse height spectra. Scintillation decay times were several tens of μs under pulse X-ray excitation.  相似文献   

9.
0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF4 (Pr:LuLiF4) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr3+ 4f-4f transitions. Intense absorption bands related with the Pr3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137Cs γ-ray.  相似文献   

10.
Mn和N共掺ZnO稀磁半导体薄膜的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用对Zn2N3:Mn薄膜热氧化的方法成功制备了高含N量的Mn和N共掺ZnO的稀磁半导体薄膜.在没有N离子共掺的情况下,ZnO:Mn薄膜的铁磁性非常微弱;如果进行N离子的共掺杂,就会发现ZnO:Mn薄膜在室温下表现出非常明显的铁磁性,饱和离子磁矩为0.23 μB—0.61 μB.这说明N的共掺激发了ZnO:Mn薄膜中的室温铁磁性,也就是受主的共掺引起的空穴有利于ZnO中二价Mn离子的铁磁性耦合,这和最近的相关理论研究符合很好. 关键词: 磁性半导体 受主掺杂 空穴媒介的铁磁性  相似文献   

11.
Mn doped TiO2 nanoparticles are synthesized by sol–gel method. Incorporation of Mn shifts the diffraction peak of TiO2 to lower angle. The position and width of the Raman peak and photoluminescence intensity of the doped nanoparticles varies with oxygen vacancy and Mn doping level. The electron spin resonance spectra of the Mn doped TiO2 show peaks at g = 1.99 and 4.39, characteristic of Mn2+ state. Reduction in the emission intensity, on Mn doping, is owing to the increase of nonradiative oxygen vacancy centers. Mn doped TiO2, with 2% Mn, shows ferromagnetic ordering at low applied field. Paramagnetic contribution increases as Mn loading increases to 4% and 6%. Temperature dependent magnetic measurement shows a small kink in the ZFC curve at about 40 K, characteristic of Mn3O4. The ferromagnetic ordering is possibly due to the interaction of the neighboring Mn2+ ions via oxygen vacancy (F+ center). Increase in Mn concentration increases the fraction of Mn3O4 phase and thereby increases the paramagnetic ordering.  相似文献   

12.
《Radiation measurements》2000,32(2):123-128
MgSO4:Dy, MgSO4:Tm and MgSO4:Dy,Mn thermoluminescence (TL) phosphors have been prepared and their emission spectra were measured using a linear heater and optical multichannel analyzer. Emission bands at about 480, 580 and 660 nm of MgSO4 doped with Dy were observed in three dimension (3D) glow curve. Emission bands about 360, 460, and 660 nm were observed in a 3D glow curve of MgSO4 doped with Tm. The emission spectra of MgSO4:Dy and MgSO4:Tm are attributed to the characteristic emission wavelengths from transitions of Dy3+ and Tm3+ respectively. The results show that the structures of traps in matrix materials determine the activation energy distribution and dopant energy levels of rare earth ions are related with the emission spectrum wavelengths of sulfate phosphors. The intensities of the glow peaks in both bands at about 480 and 580 nm in MgSO4 doped Dy and Mn were dramatically reduced in comparison with that of MgSO4 doped Dy except above 300°C. It means that the trapping structures of MgSO4 :Dy phosphor has greatly been altered by the co-dopant Mn but no change is observed in wavelengths of the emission spectra.  相似文献   

13.
Apatite-type oxides of formula (La/Sr)10−xSi6O26+y have been attracting significant interest recently, because of their high oxide ion conductivity. In this paper we report the synthesis and conductivities of phases based on doping La9.33Si6O26 with Co, Fe, Mn on the Si site, according to the formula La9.33+x/3Si6−xMxO26 (M=Co, Fe, Mn). Substitution limits observed were x≤1.5 (Co), x≤1.25 (Fe), x≤0.5 (Mn). Higher Mn levels could be achieved by substituting onto the La site, with it being possible to prepare the phase La8Mn2Si6O26. The highest conductivities were observed for the Co doped samples, although investigations into the dependence of conductivity on p(O2) (0.2–10−5 atm.) indicated that the conductivity was dominated by the electronic component in these cases. In contrast, the conductivities for the Fe and Mn doped samples were mainly ionic in the same p(O2) range. Experiments into varying the oxygen content of these doped phases indicated that increasing the oxygen content above the nominally stoichiometric O26 appears to increase the oxide ion conductivity. Preliminary studies of the reactivity of the electrolyte La9.33Si6O26 with potential SOFC cathode materials (La1−xSrxMO3; M=Co, Fe, Mn) suggests that reaction can occur at high temperatures leading to the incorporation of the transition metal into the apatite electrolyte. However, the fact that these doped phases exhibit high conductivities suggests that this may limit any problems caused by such a reaction at the electrolyte-electrode interface. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

14.
Gallium antimonide crystals highly doped with Mn were prepared by a liquid-phase-electroepitaxy growth method. The crystals exhibited high hole concentrations up to 6×1018 cm−3. Photoluminescence (PL) and transmission techniques were used for their investigation. Spectral line-shapes typical for highly doped semiconductors were observed. The lines revealed the features corresponding to band gap narrowing and valence-band filling phenomena. Values of the band-gap narrowing ΔEg and the degree of the valence-band filling ΔEF were estimated from the PL spectra. The ionization energy of the Mn acceptor Ei was estimated to be approximately 15.1-15.6 meV. At low temperatures, the PL maxima shifted relatively strongly towards higher energy with temperature. The shifts most probably resulted from a dramatic change in the electron density of states near the bottom of the conduction band. The extent of low-energy tails of the PL bands correlates with the doping levels. The transmission spectra exhibited an absorption band centred at around 774-780 meV. The band most probably originated in electron transitions from the level of spin-orbit splitting to the top of the valence band.  相似文献   

15.
Results of the investigation concerning thermoluminescence (TL) responses to X, gamma and neutron radiation fields for crystals of complex fluoride K2GdF5 undoped and doped with varying concentrations of Dy3+ ions are presented. Crystals doped with 5.0 at% Dy3+ have shown the most efficient TL response, with a linear response to doses for all the radiation fields. In the X rays range, the maximum TL response has been found to be 15 times more than the response for gamma. The fast and thermal neutron TL outputs were evaluated for K2Gd0.95Y0.05F5 and the contribution of the gamma component in the TL curve was estimated.  相似文献   

16.
We report the fabrication of organic thin‐film transistors (OTFTs) with high‐k gate dielectrics of Mn‐doped Bi2Ti2O7 (BTO) films. 3% Mn‐doped BTO films deposited on polymer substrates by pulsed laser deposition at room temperature exhibit low leakage currents of 2.1 × 10–8 A/cm2 at an applied electric field of 0.3 MV/cm, while undoped BTO films show much higher leakage currents of 4.3 × 10–4 A/cm2. Mn doping effectively reduces the number of oxygen vacancies in the films and improves the electrical properties. Low operation voltage and significantly reduced leakage currents are demonstrated in pentacene‐based OTFTs with the Mn‐doped BTO gate dielectrics. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The series of whitlockite compounds Ca3(PO4)2 and Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er, Lu) was studied in radioluminescence (RL) and thermally stimulated luminescence (TSL) excited by X-rays. f-f emission lines of Ln3+ were observed in RL for Ca9Ln(PO4)7 (Ln = Pr, Eu, Tb, Dy, Ho, Er) whereas d-d emission band of the impurity Mn2+ was observed in Mn:Ca3(PO4)2 and Mn:Ca9Lu(PO4)7 at 655 nm. In TSL, the Eu, Ho and Er compounds did not show any signal. As Eu3+, Ho3+ and Er3+ present the highest Ln3+/Ln4+ ionization potential (IP) of the series, this was interpreted as the inability of these lanthanides to trap a hole. On the contrary Pr3+ in Ca9Pr(PO4)7, Tb3+ in Ca9Tb(PO4)7, Dy3+ in Ca9Dy(PO4)7, Mn2+ in Mn:Ca3(PO4)2 and Mn:Ca9Lu(PO4)7 were identified as hole traps and radiative recombination centers in the TSL mechanism. Ca9Tb(PO4)7 was found to be a high intensity green persistent phosphor whereas Mn:Ca9Lu(PO4)7 is a red persistent phosphor suitable for in vivo imaging application.  相似文献   

18.
Manganese nanoparticles were grown in silica glass and silica film on silicon substrate by annealing of the sol-gel prepared porous silicate matrices doped with manganese nitrate. Annealing of doped porous silicate matrices was performed at various conditions that allowed to obtain the nanocomposite glasses with various content of metallic Mn. TEM of Mn/SiO2 glass indicates the bimodal size distribution of Mn nanoparticles with mean sizes of 10.5 nm and 21 nm. The absorption and photoluminescence spectra of Mn/SiO2 glasses were measured. In the absorption spectra at 300 nm (4.13 eV) we observed the band attributed to the surface plasmon resonance in Mn nanoparticles. The spectra proved the creation of Mn2+ and Mn3+ ions in silica glass as well. The absorption spectra of Mn/SiO2 glasses annealed in air prove the creation of manganese oxide Mn2O3. The measured reflection spectra of Mn/SiO2 film manifest at 240-310 nm the peculiarity attributed to surface plasmons in Mn nanoparticles.  相似文献   

19.
The recombination luminescence in NaCl crystals pure and doped with Cu+ and Mn++ has been studied. A unique mechanisme that implies the recombination VK-electron is proposed to explain the thermoluminescence as well as the radioluminescence and the after-glow following an irradiation.  相似文献   

20.
In the present work Mn doped YCrO3 nanoparticles are synthesized by the sol–gel method. Samples have been characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–vis absorption spectroscopy. The optical band gap of Mn doped YCrO3 nanoparticles increases with increase of doping concentration. The dc resistivity of the prepared samples decreases with increasing temperature. The variation of ac conductivity with frequency has been explained by the Correlated Barrier Hoping (CBH) conduction mechanism. Dielectric permittivity of the samples was studied and it follows the power law ε/(f)∝Tn, where the temperature exponent n is found to be frequency dependent. The dielectric properties of the samples have been discussed in terms of electric modulus vector. Both activation energies due to dc resistance and dielectric response have been measured for the different samples and it is observed that it increases with the Mn content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号