首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the title compound 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐piperidone, C22H23NO3, (I), the central heterocyclic ring adopts a flattened boat conformation, while in the related salt 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐oxopiperidin­ium chloride, C22H24NO3+·Cl, (II), the ring exhibits a `sofa' conformation in which the N atom deviates from the planar fragment. The pendant benzene rings are twisted from the heterocyclic ring planes in both mol­ecules in the same direction, the range of dihedral angles between the ring planes being 24.5 (2)–32.7 (2)°. The dominant packing motif in (I) involves centrosymmetric dimers bound by weak intermolecular C—H⋯O hydrogen bonds. In (II), cations and anions are linked by strong N—H⋯Cl hydrogen bonds, while weak C—H⋯O and C—H⋯Cl hydrogen bonds link the cations and anions into a three‐dimensional framework.  相似文献   

2.
The crystal structures of the title compounds, viz. C24H14F2N2O2, (I), and C25H17FN2O2, (II), respectively, have been determined in order to unravel the role of an ordered F atom in generating stable supra­molecular assemblies. On changing the substitution from fluorine to a methyl group, C—H⋯F inter­actions are replaced by C—H⋯π inter­actions, revealing the importance of such weak inter­actions when present alongside N—H⋯O and C—H⋯O hydrogen bonds. The dihedral angle between the planes of the 4‐fluoro­phenyl ring and the pyridine ring is 26.8 (1)° in (I), while that between the planes of the 4‐methyl­phenyl and pyridine rings is 29.5 (1)° in (II).  相似文献   

3.
In the title compound, C15H16NO+·C24H20B, the pyridinium ring of the cation makes a dihedral angle of 4.3 (2)° with the benzene ring. Each is rotated in the same direction with respect to the central C—CH=CH—C linkage, by 10.0 (2) and 7.8 (2)°, respectively. The anions have a slightly distorted tetrahedral geometry. The most interesting feature of the structure is that the anions form a honeycomb‐like hexagonal structure down the b axis through C—H...π interactions. The hexagon is constructed from six BPh4 anions. The cations interact in a head‐to‐tail fashion along [010], forming chains, and pack antiparallel inside the above honeycomb‐like structure through C—H...π interactions.  相似文献   

4.
The title compound, C14H9N5S, has been synthesized and characterized both spectroscopically and structurally. The triazolo–thia­diazole system, the pyridine ring and the phenyl ring are all planar. The plane of the triazolo–thia­diazole system forms dihedral angles of 1.53 (13) and 7.55 (12)° with the planes of the pyridine and phenyl rings, respectively. In the mol­ecule, there are two intra­molecular inter­actions of types C—H⋯N and C—H⋯S. Inter­molecular C—H⋯N inter­actions involving a phenyl CH group and a triazole N atom lead to the formation of a one‐dimensional chain. In the crystal structure, two types of π–π inter­actions affect the packing of the mol­ecules. In addition, there are inter­molecular non‐bonded S⋯N contacts of 2.870 (2) Å, which may cause steric hindrance.  相似文献   

5.
The title compounds, C10H12N4, (I), and C9H10N4, (II), have been synthesized and characterized both spectroscopically and structurally. The dihedral angles between the triazole and benzene ring planes are 26.59 (9) and 42.34 (2)°, respectively. In (I), mol­ecules are linked principally by N—H⋯N hydrogen bonds involving the amino NH2 group and a triazole N atom, forming R44(20) and R24(10) rings which link to give a three‐dimensional network of mol­ecules. The hydrogen bonding is supported by two different C—H⋯π inter­actions from the tolyl ring to either a triazole ring or a tolyl ring in neighboring mol­ecules. In (II), inter­molecular hydrogen bonds and C—H⋯π inter­actions produce R34(15) and R44(21) rings.  相似文献   

6.
The title compounds, (E)‐2‐[(2‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (I), (E)‐2‐[(3‐bromo­phenyl)­imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (II), and (E)‐2‐[(4‐bromo­phenyl)imino­methyl]‐4‐methoxy­phenol, C14H12BrNO2, (III), adopt the phenol–imine tautomeric form. In all three structures, there are strong intra­molecular O—H⋯N hydrogen bonds. Compound (I) has strong inter­molecular hydrogen bonds, while compound (III) has weak inter­molecular hydrogen bonds. In addition to these inter­molecular inter­actions, C—H⋯π inter­actions in (I) and (III), and π–π inter­actions in (I), play roles in the crystal packing. The dihedral angles between the aromatic rings are 15.34 (12), 6.1 (3) and 39.2 (14)° for (I), (II) and (III), respectively.  相似文献   

7.
The molecule of the title compound, C18H24N2O2, resides on a crystallographic inversion centre. The mol­ecule adopts a transoid conformation with respect to the central C—C single bond and is in the meso form. A polarimetric study of the compound did not show any optical activity, indicating that the compound is a racemic mixture entirely consistent with the centrosymmetric space group. In the mol­ecule, there is one intra­molecular N—H⋯O inter­action, resulting in the formation of a five‐membered ring. In the crystal structure, inter­molecular O—H⋯N and C—H⋯O inter­actions are also observed. These inter­actions form an R22(9) ring and one‐dimensional linear chains of edge‐fused rings running parallel to the [010] direction, which stabilize the crystal packing.  相似文献   

8.
In the asymmetric unit of the title compound, C10H15N4O2+·H2PO4, there are two protonated amino­guanidinium cations and two dihydrogenphosphate anions. The positive charge on the protonated amidine group is delocalized over the three C—N bonds in a manner similar to that found in guanidinium salts. The amino­guanidinium cations are found to be the E‐isomer structures. Intra­molecular inter­actions of the N—H⋯N type are observed, leading to the formation of five‐membered rings. Extensive networks of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds stabilize the three‐dimensional network. In the crystal structure, π–π inter­actions between the benzene rings, with a distance of 3.778 (2) Å between the ring centroids, also affect the packing of the mol­ecules.  相似文献   

9.
The mol­ecules of 2‐benzoyl‐1‐benzofuran, C15H10O2, (I), inter­act through double C—H⋯O hydrogen bonds, forming dimers that are further linked by C—H⋯O, C—H⋯π and π–π inter­actions, resulting in a three‐dimensional supramolecular network. The dihedral angle between the benzo­yl and benzofuran fragments in (I) is 46.15 (3)°. The mol­ecules of bis­(5‐bromo‐1‐benzofuran‐2‐yl) ketone, C17H8Br2O3, (II), exhibit C2 symmetry, with the carbon­yl group (C=O) lying along the twofold rotation axis, and are linked by a combination of C—H⋯O and C—H⋯π inter­actions and Br⋯Br contacts to form sheets. The stability of the mol­ecular packing in 3‐mesit­yl‐3‐methyl­cyclo­but­yl 3‐methyl­naphtho[1,2‐b]furan‐2‐yl ketone, C28H28O2, (III), arises from C—H⋯π and π–π stacking inter­actions. The fused naphthofuran moiety in (III) is essentially planar and makes a dihedral angle of 81.61 (3)° with the mean plane of the trimethyl­benzene ring.  相似文献   

10.
Mol­ecules of the title compound, C8H9NO2, are linked into sheets by a combination of C—H·N, O—H·N and O—H·O hydrogen bonds and C—H·π inter­actions. The hydrogen bonds are arranged as described by the graph‐set ring notations R22(7) and R33(5), and a C8 chain motif. There are two planar symmetry‐independent mol­ecules in the asymmetric unit, with a dihedral angle of 19.24 (5)° between their least‐squares mean planes.  相似文献   

11.
The title complex, [Ag4(C7H5O3)2(C8H6N2)4(C7H6O3)4], lies about an inversion centre and has a unique tetra­nuclear structure consisting of four AgI atoms bridged by four N atoms from two 1,8‐naphthyridine (napy) ligands to form an N:N′‐bridge and four O atoms from two salicylate (SA) ligands to form an O:O′‐bridge. The Ag atoms have distorted octa­hedral coordination geometry. The centrosymmetric Ag4 ring has Ag—Ag separations of 2.772 (2) and 3.127 (2) Å, and Ag—Ag—Ag angles of 107.70 (4) and 72.30 (4)°. All SA hydroxy groups take part in intra­molecular O—H⋯O hydrogen bonding. In the crystal packing, the napy rings are oriented parallel and overlap one another. These π–π inter­actions, together with weak inter­molecular C—H⋯O contacts, stabilize the crystal structure.  相似文献   

12.
Subject to packing with different anions, the title cation undergoes various conformational changes with significantly different N—C—C—C torsion angles, as well as different angles between the NCN2 guanidine planes. The 2,2‐(propane‐1,3‐di­yl)bis­(1,1,3,3‐tetra­methyl­guanidinium) salts reported here, viz. the dibromide, C13H32N62+·2Br, the tetra­phenyl­borate chloride, C13H32N62+·C24H20B·Cl, the tetra­chloro­mercurate, (C13H32N6)[HgCl4], and the bis­(trifluoro­methanesulfonate), C13H32N62+·2CF3SO3, are dominated by strong inter­molecular N—H⋯X hydrogen bonds, which form different packing patterns.  相似文献   

13.
In the structure of l ‐prolinium picrate, C5H10NO2+·C6H2N3O7, the Cγ atom of the pyrrolidine ring has conformational disorder. Both the major and minor conformers of the pyrrolidine ring adopt conformations inter­mediate between a half‐chair and an envelope. Both the cation and anion are packed through chelated three‐centred N—H⋯O hydrogen bonds. The prolinium cation connects two different picrate anions, leading to an infinite chain running along the b axis. In 2‐methyl­pyridinium picrate, C6H8N+·C6H2N3O7, the cations and anions are packed separately along the a axis and are inter­connected by N—H⋯O hydrogen bonds. Intra­molecular contacts between phenolate O atoms and adjacent nitro groups are identified in both structures. A graph‐set motif of R12(6) is observed in both structures.  相似文献   

14.
The title compounds, C12H20N6O2, (I), and C5H9N3O2, (II), display the characteristic features of 1,2,4‐triazole derivatives. Compound (I) lies about an inversion centre which is at the mid‐point of the central C—C bond. Compound (II) also contains a planar 1,2,4‐triazole ring but differs from (I) in that it has a hydr­oxy group attached to the ring. Mol­ecules of (I) are held together in the crystal structure by inter­molecular N—H⋯O contacts and by weak π–π stacking inter­actions between the 1,2,4‐triazole moieties. Compound (II) contains inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.  相似文献   

15.
The two components of the title heterodimer, C17H21NO2·C8H5NO2, are linked end‐to‐end via O—H⋯O(=C) and C—H⋯O(=C) hydrogen‐bond inter­actions. Additional lateral C—H⋯O inter­actions link the dimers in a side‐by‐side fashion to produce wide infinite mol­ecular ribbons. Adjacent ribbons are inter­connected viaπ–π stacking and C—H⋯π(arene) inter­actions. This structure represents the first evidence of robust hydrogen‐bond formation between the moieties of pyridin‐4(1H)‐one and benzoic acid.  相似文献   

16.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

17.
The structures of N‐ethyl‐3‐(4‐fluoro­phen­yl)‐5‐(4‐methoxy­phen­yl)‐2‐pyrazoline‐1‐thio­carboxamide, C19H20FN3OS, (I), and 3‐(4‐fluoro­phen­yl)‐N‐methyl‐5‐(4‐methyl­phen­yl)‐2‐pyrazoline‐1‐thio­carboxamide, C18H18FN3S, (II), have similar geometric parameters. The meth­oxy/methyl‐substituted phenyl groups are almost perpendicular to the pyrazoline (pyraz) ring [inter­planar angles of 89.29 (8) and 80.39 (10)° for (I) and (II), respectively], which is coplanar with the fluoro­phenyl ring [inter­planar angles of 5.72 (9) and 10.48 (10)°]. The pyrazoline ring approximates an envelope conformation in both structures, with the two‐coordinate N atom involved in an intra­molecular N—H⋯Npyraz inter­action. In (I), N—H⋯O and C—H⋯S inter­molecular hydrogen bonds are the primary inter­actions, whereas in (II), there are no intermolecular hydrogen bonds.  相似文献   

18.
In the title compound, C18H16N2O3, the indole ring is planar and the two adjacent carbonyl groups are mutually trans oriented with a torsion angle of 144.8 (3)°. The single C—C bond linking the two carbonyl functionalities is 1.539 (4) Å. Mol­ecules are linked into a two‐dimensional network by inter­molecular N—H⋯O hydrogen bonds.  相似文献   

19.
The title compound [systematic name: 5‐hydroxy‐2‐(3‐hydroxy‐4,5‐dimethoxy­phenyl)‐3,6,7‐trimethoxy‐4H‐chromen‐4‐one], C20H20O9, was isolated from the seeds of Cleom viscosa Linn. Two independent mol­ecules (A and B) are present in the asymmetric unit with almost similar conformations. The dihedral angles between the fused chromene ring system and the benzene ring bonded to it in mol­ecules A and B are 4.2 (1) and 12.7 (1)°, respectively. The hydroxy O atoms are involved in intra­molecular hydrogen bonding. The mol­ecules are linked by C—H⋯O and O—H⋯O inter­actions into chains of edge‐fused R33(22) rings. Aromatic π–π and weak C—H⋯π(arene) inter­actions are also observed.  相似文献   

20.
The title compounds, C21H14Cl2NO2+·CF3O3S, (I), and C20H11Cl2NO2, (II), form triclinic crystals. Adjacent cations of (I) are oriented either parallel or antiparallel; in the latter case, they are related by a centre of symmetry. Together with the CF3SO3 anions, the antiparallel‐oriented cations of (I) form layers in which the mol­ecules are linked via a network of C—H·O and π–π inter­actions (between the benzene rings). These layers, in turn, are linked via a network of multidirectional π–π inter­actions between the acridine rings, and the whole lattice is stabilized by electrostatic inter­actions between ions. Adjacent mol­ecules of (II) are oriented either parallel or antiparallel; in the latter case, they are related by a centre of symmetry. Parallel‐oriented mol­ecules are arranged in chains stabilized via C—H·Cl inter­actions. These chains are oriented either parallel or antiparallel and are stabilized, in the latter case, via multidirectional π–π inter­actions and more generally via dispersive inter­actions. Acridine and independent benzene moieties lie parallel in the lattices of (I) and (II), and are mutually oriented at an angle of 33.4 (2)° in (I) and 9.3 (2)° in (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号