首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimizing the light‐emitting efficiency of silicon quantum dots (Si QDs) has been recently intensified by the demand of the practical use of Si QDs in a variety of fields such as optoelectronics, photovoltaics, and bioimaging. It is imperative that an understanding of the optimum light‐emitting efficiency of Si QDs should be obtained to guide the design of the synthesis and processing of Si QDs. Here an investigation is presented on the characteristics of the photoluminescence (PL) from hydrosilylated Si QDs in a rather broad size region (≈2–10 nm), which enables an effective mass approximation model to be developed, which can very well describe the dependence of the PL energy on the QD size for Si QDs in the whole quantum‐confinement regime, and demonstrates that an optimum PL quantum yield (QY) appears at a specific QD size for Si QDs. The optimum PL QY results from the interplay between quantum‐confinement effect and surface effect. The current work has important implications for the surface engineering of Si QDs. To optimize the light‐emission efficiency of Si QDs, the surface of Si QDs must be engineered to minimize the formation of defects such as dangling bonds at the QD surface and build an energy barrier that can effectively prevent carriers in Si QDs from tunneling out.  相似文献   

2.
尚向军  马奔  陈泽升  喻颖  查国伟  倪海桥  牛智川 《物理学报》2018,67(22):227801-227801
介绍了自组织量子点单光子发光机理及器件研究进展.主要内容包括:半导体液滴自催化外延GaAs纳米线中InAs量子点和GaAs量子点的单光子发光效应、自组织InAs/GaAs量子点与分布布拉格平面微腔耦合结构的单光子发光效应和器件制备,单量子点发光的共振荧光测量方法、量子点单光子参量下转换实现的纠缠光子发射、单光子的量子存储效应以及量子点单光子发光的光纤耦合输出芯片制备等.  相似文献   

3.
We report the polarization-dependent energy shift of excitonic emission in a self-assembled InAlAs/AlGaAs quantum dot (QD). The energy shift is well known as Overhauser shift and was observed in a naturally formed GaAs QD using monolayer fluctuation of a quantum well. However, there has been no observation so far in a self-assembled QD, which is suitable for formation of vertically coupled QDs. We demonstrate that the magnitude of the Overhauser shift is enhanced by the photo-injection of the highly polarized electron and is controllable by the polarization of the excitation light in a self-assembled InAlAs QD.  相似文献   

4.
A novel white light-emitting diode based on a large Stokes shift (~200 nm) and using pure green light-emitting CdSeS quantum dots (QDs) with an Ag/ZnSnO/QDs/spiro-TPD/ITO structure has been fabricated in which ZnSnO and spiro-TPD are served as the electron and hole transport layer, respectively. The large Stokes shift of the CdSeS QDs excludes potentially Förster resonance energy transfer process, which allows spiro-TPD to act as both an emitter and hole transport layer. The devices exhibit a wide EL spectrum consisting of three components: blue emission from spiro-TPD, green emission from QD band–band recombination, and red emission from QD surface-state recombination. We further found that as the intensity ratios among these three components vary with bias the color of the QD light-emitting diodes is tunable. The device displays a good white light-emitting characteristic with CIE coordinates of (0.281, 0.384) at an appropriate bias.  相似文献   

5.
The luminescence properties of double Ge/Si quantum dot structures are studied at liquid helium temperature depending on the Si spacer thickness d in QD molecules. A seven-fold increase in the integrated photoluminescence intensity is obtained for the structures with optimal thickness d = 2 nm. This enhancement is explained by increasing the overlap integral of electron and hole wavefunctions. Two main factors promote this increasing. The first one is that the electrons are localized at the QD base edges and their wavefunctions are the linear combinations of the states of in-plane Δ valleys, which are perpendicular in k-space to the growth direction [001]. This results in the increasing probability of electron penetration into Ge barriers. The second factor is the arrangement of Ge nanoclusters in closely spaced QD groups. The strong tunnel coupling of QDs within these groups increases the probability of hole finding at the QD base edge, that also promotes the increase in the radiative recombination probability.  相似文献   

6.
Amorphous silicon quantum dots (a-Si QDs) were grown in a silicon nitride film by plasma enhanced chemical vapor deposition. Transmission electron micrographs clearly demonstrated that a-Si QDs were formed in the silicon nitride. Photoluminescence and optical absorption energy measurement of a-Si QDs with various sizes revealed that tuning of the photoluminescence emission from 2.0 to 2.76 eV is possible by controlling the size of the a-Si QD. Analysis also showed that the photoluminescence peak energy E was related to the size of the a-Si QD, a (nm) by E(eV) = 1.56+2.40/a(2), which is a clear evidence for the quantum confinement effect in a-Si QDs.  相似文献   

7.
In this work, it is shown how different carrier recombination paths significantly broaden the photoluminescence (PL) emission bandwidth observed in type‐II self‐assembled SiGe/Si(001) quantum dots (QDs). QDs grown by molecular beam epitaxy with very homogeneous size distribution, onion‐shaped composition profile, and Si capping layer thicknesses varying from 0 to 1100 nm are utilized to assess the optical carrier‐recombination paths. By using high‐energy photons for PL excitation, electron‐hole pairs can be selectively generated either above or below the QD layer and, thus, clearly access two radiative carrier recombination channels. Fitting the charge carrier capture‐, loss‐ and recombination‐dynamics to PL time‐decay curves measured for different experimental configurations allows to obtain quantitative information of carrier capture‐, excitonic‐emission‐, and Auger‐recombination rates in this type‐II nano‐system.  相似文献   

8.
The photoluminescence (PL) inhomogeneity has been studied in InAs quantum dots (QDs) embedded in the symmetric In0.15Ga0.85As/GaAs quantum wells (QWs) with QDs grown at different temperatures. It was shown that three reasons are responsible for the emission inhomogeneity in studied QD structures: (i) the high concentration of nonradiative recombination centers in the capping In0.15Ga0.85As layer at low QD growth temperatures, (ii) the QD density and size distributions for the structure with QD grown at 510 °C, (iii) the high concentration of nonradiative recombination centers in the GaAs barrier at higher QD growth temperatures.  相似文献   

9.
We discuss photonic crystals (PCs) with a microelectromechanical system (MEMS) and semiconductor quantum dots (QDs) as novel classes of PC devices. Integration of MEMS structures into PC devices enables one to realize several kinds of functional devices, such as modulators, switches, and tunable filters for highly integrated photonic circuits. We describe the basic concept of MEMS-integrated PC devices and show numerical and experimental demonstrations of MEMS-integrated functional PC devices. On the other hand, QDs are promising candidates for active media in PC devices. Spontaneous emission control of QD emission in PC nanocavities is especially important for novel optoelectronic devices and quantum information devices. In PC nanocavities, the interaction between QD excitons and photons is enhanced dramatically. The control of spontaneous emission spectrum and the enhancement of the luminescence intensity of InAs QDs by PC nanocavities are demonstrated at telecommunication wavelengths. The Purcell effect for ensemble and single QDs in PC nanocavities are also discussed.  相似文献   

10.
苏丹  窦秀明  丁琨  王海艳  倪海桥  牛智川  孙宝权 《物理学报》2015,64(23):235201-235201
采用光学方法确定InAs/GaAs单量子点在样品外延面上的位置坐标, 利用AlAs牺牲层把含有量子点的GaAs层剥离并放置在含有金纳米颗粒或平整金膜上, 研究量子点周围环境不同对量子点自发辐射寿命及发光提取效率的影响. 实验结果显示, 剥离前后量子点发光寿命的变化小于13%, 含有金纳米颗粒的量子点发光强度是剥离前的7倍, 含有金属薄膜的量子点发光强度是剥离前的2倍. 分析表明在金纳米颗粒膜上的量子点荧光强度的增加主要来自于金纳米颗粒对量子点荧光的散射效应, 从而提高量子点发光的提取效率.  相似文献   

11.
All‐optical modulation based on silicon quantum dot doped SiOx:Si‐QD waveguide is demonstrated. By shrinking the Si‐QD size from 4.3 nm to 1.7 nm in SiOx matrix (SiOx:Si‐QD) waveguide, the free‐carrier absorption (FCA) cross section of the Si‐QD is decreased to 8 × 10−18 cm2 by enlarging the electron/hole effective masses, which shortens the PL and Auger lifetime to 83 ns and 16.5 ps, respectively. The FCA loss is conversely increased from 0.03 cm−1 to 1.5 cm−1 with the Si‐QD size enlarged from 1.7 nm to 4.3 nm due to the enhanced FCA cross section and the increased free‐carrier density in large Si‐QDs. Both the FCA and free‐carrier relaxation processes of Si‐QDs are shortened as the radiative recombination rate is enlarged by electron–hole momentum overlapping under strong quantum confinement effect. The all‐optical return‐to‐zero on‐off keying (RZ‐OOK) modulation is performed by using the SiOx:Si‐QD waveguides, providing the transmission bit rate of the inversed RZ‐OOK data stream conversion from 0.2 to 2 Mbit/s by shrinking the Si‐QD size from 4.3 to 1.7 nm.  相似文献   

12.
The paper presents the comparison of emission efficiencies for crystalline Si quantum dots (QDs) and amorphous Si nanoclusters (QDs) embedded in hydrogenated amorphous (a-Si:H) films grown by the hot wire-CVD method (HW-CVD) at the variation of technological parameters. The correlations between the intensities of different PL bands and the volumes of Si nanocrystals (nc-Si:H) and/or an amorphous (a-Si:H) phase have been revealed using X-ray diffraction (XRD) and photoluminescence (PL) methods. These correlations permit to discuss the PL mechanisms in a-Si:H films with embedded nc-Si QDs. The QD parameters of nc-Si:H and a-Si:H QDs have been estimated from PL results and have been compared (for nc-Si QDs) with the parameters obtained by the XRD method. Using PL and XRD results the relations between quantum emission efficiencies for crystalline (ηcr) and amorphous (ηam) QDs have been estimated and discussed for all studied QD samples. It is revealed that a-Si:H films prepared by HW-CVD with the variation of wire temperatures are characterized by better passivation of nonradiative recombination centers in comparison with the films prepared at the variation of substrate temperatures or oxygen flows.  相似文献   

13.
In this paper, we present a comprehensive study of high efficiencies tandem solar cells monolithically grown on a silicon substrate using GaAsPN absorber layer. InGaAs(N) quantum dots and GaAsPN quantum wells have been grown recently on GaP/Si susbstrate for applications related to light emission. For photovoltaic applications, we consider the GaAsPN diluted nitride alloy as the top junction material due to both its perfect lattice matching with Si and ideal bandgap energy for current generation in association with the Si bottom cell. Numerical simulation of the top cell is performed. The effect of layer thicknesses and doping on the cell efficiency are evidenced. In these structures a tunnel junction (TJ) is needed to interconnect both the top and bottom sub-cells. We compare the simulated performances of different TJ structures and show that the GaP(n+)/Si(p+) TJ is promising to improve performances of the current–voltage characteristic.  相似文献   

14.
CdTe/CdS quantum dots(QDs) are fabricated on Si nanowires(NWs) substrates with and without Au nanoparticles(NPs). The formation of Au NPs on Si NWs can be certified as shown in scanning electron microscopy images. The optical properties of samples are also investigated. It is interesting to find that the photoluminescence(PL) intensity of Cd Te/Cd S QD films on Si nanowire substrates with Au NPs is significantly increased,which can reach 8-fold higher than that of samples on planar Si without Au NPs. The results of finite-difference time-domain simulation indicate that Au NPs induce stronger localization of electric field and then boost the PL intensity of QDs nearby. Furthermore, the time-resolved luminescence decay curve shows the PL lifetime, which is about 5.5 ns at the emission peaks of QD films on planar, increasing from 1.8 ns of QD films on Si NWs to4.7 ns after introducing Au NPs into Si NWs.  相似文献   

15.
Monodispersed silicon nanocrystals show novel electrical and optical characteristics of silicon quantum dots, such as single-electron tunneling, ballistic electron transport, visible photoluminescence and high-efficiency electron emission.Single-electron memory effects have been studied using a short-channel MOSFET incorporating Si quantum dots as a floating gate. Surface nitridation of Si nanocrystal memory nodes extends the charge-retention time significantly. Single-electron storage in individual Si dots has been evaluated by Kelvin probe force microscopy.Photoluminescence and electron emission are observed for surface-oxidized silicon nanocrystals. Efficiency of the no-phonon-assisted transition increases with decreasing core Si size. Electron emission efficiency as high as 5% has been achieved for the Si-nanocrystal-based cold electron emitter devices. The non-Maxwellian energy distribution of emitted electrons suggests that the mechanism of electron emission is due to ballistic transport through arrays of surface-oxidized Si nanocrystals. Combined with the ballistic electron emission, the quasi-direct light emission properties can be used for developing Si-based lasers.  相似文献   

16.
黄伟其  陈汉琼  苏琴  刘世荣  秦朝建 《中国物理 B》2012,21(6):64209-064209
A new nanolaser concept using silicon quantum dots (QDs) is proposed. The conduction band opened by the quantum confinement effect gives the pumping levels. Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission. An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser. Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.  相似文献   

17.
Lasers operating at 1.3 μm have attracted considerable attention owing to their potential to provide efficient light sources for next-generation high-speed communication systems. InAs/GaAs quantum dots (QDs) were pointed out as a reliable low-cost way to attain this goal. However, due to the lattice mismatch, the accumulation of strain by stacking the QDs can cause dislocations that significantly degrade the performance of the lasers. In order to reduce this strain, a promising method is the use of InAs QDs embedded in InGaAs layers. The capping of the QD layer with InGaAs is able to tune the emission toward longer and controllable wave-lengths between 1.1 and 1.5 μm. In this work, using the effective-mass envelope-function theory, we investigated theoretically the optical properties of coupled InAs/GaAs strained QDs based structures emitting around 1.33 μm. The calculation was performed by the resolution of the 3D Schrödinger equation. The energy levels of confined carriers and the optical transition energy have been investigated. The oscillator strengths of this transition have been studied with and without taking into account the strain effect in the calculations. The information derived from the present study shows that the InGaAs capping layer may have profound consequences as regards the performance of an InAs/GaAs QD based laser. Based on the present results, we hope that the present work make a contribution to experimental studies of InAs/GaAs QD based structures, namely the optoelectronic applications concerning infrared and mid-infrared spectral regions as well as the solar cells.  相似文献   

18.
The dispersion of silicon quantum dots (Si QDs) in water has not been established as well as that in organic solvents. It is now demonstrated that the excellent dispersion of Si QDs in water with photoluminescence (PL) quantum yields (QYs) comparable to those for hydrophobic Si QDs can be realized by combining the processes of hydrosilylation and self‐assembly. Hydrogen‐passivated Si QDs are initially hydrosilylated with 1‐dodecence. The toluene solution of the resulting dodecyl‐passivated Si QDs is mixed with the water solution of the amphiphilic polymer of Pluronic F127 to form an emulsion. Dodecyl‐passivated Si QDs are encapsulated in the micelles self‐assembled from F127 in the emulsion. The size of the Si‐QD‐containing micelles may be tuned in the range from 10 to 100 nm. Although self‐assembly in the emulsion causes the PL QY of Si QDs to decrease, after a few days of storage in ambient conditions, Si QDs encapsulated in the water‐dispersible micelles exhibit recovered PL QYs of ≈24% at the PL wavelength of ≈680 nm. The intensity of the PL from Si QDs encapsulated in the water‐dispersible micelles is >90% of the original value after 60 min ultraviolet illumination, indicating excellent photostability.  相似文献   

19.
1.3μm emitting InAs/GaAs quantum dots(QDs) have been grown by molecular beam epitaxy and QD light emitting diodes(LEDs) have been fabricated.In the electroluminescence spectra of QD LEDs,two clear peaks corresponding to the ground state emission and the excited state emission are observed.It was found that the ground state emission could be achieved by increasing the number of QDs contained in the active region because of the state filling effect.This work demonstrates a way to control and tune the emitting wavelength of QD LEDs and lasers.  相似文献   

20.
A fabrication technique and optimal growth conditions are reported to develop a Sb-based quantum dot (QD) structure as a nanostructured III–V semiconductor on a silicon substrate. By using solid-source molecular beam epitaxy, high-density (>1010 cm−2) InGaSb QD structures can be obtained under a low growth temperature, which is compatible for use with Si-CMOS processes. We also proposed the construction of a metal/quantum dot/semiconductor (MDS) structure by using the InGaSb QD on a Si substrate. An infrared light emission with a photon energy of 0.95 eV is successfully observed from the fabricated MDS structure under the current injection conditions. It is expected that a MDS structure using a Sb-based QD will be used as a small-sized infrared light source for silicon photonic technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号