首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The title two‐dimensional hydrogen‐bonded coordination compounds, [Cu(C8H5O4)2(C4H6N2)2], (I), and [Cu(C8H7O2)2(C4H6N2)2]·H2O, (II), have been synthesized and structurally characterized. The molecule of complex (I) lies across an inversion centre, and the Cu2+ ion is coordinated by two N atoms from two 4‐methyl‐1H‐imidazole (4‐MeIM) molecules and two O atoms from two 3‐carboxybenzoate (HBDC) anions in a square‐planar geometry. Adjacent molecules are linked through intermolecular N—H...O and O—H...O hydrogen bonds into a two‐dimensional sheet with (4,4) topology. In the asymmetric part of the unit cell of (II) there are two symmetry‐independent molecules, in which each Cu2+ ion is also coordinated by two N atoms from two 4‐MeIM molecules and two O atoms from two 3‐methylbenzoate (3‐MeBC) anions in a square‐planar coordination. Two neutral complex molecules are held together via N—H...O(carboxylate) hydrogen bonds to generate a dimeric pair, which is further linked via discrete water molecules into a two‐dimensional network with the Schläfli symbol (43)2(46,66,83). In both compounds, as well as the strong intermolecular hydrogen bonds, π–π interactions also stabilize the crystal stacking.  相似文献   

2.
In the title compound, [Co(C5H3N2O4)2(H2O)2]·C10H8N2, the Co atom is trans‐coordinated by two pairs of N and O atoms from two monoanionic 4,5‐di­carboxy­imidazole ligands, and by two O atoms from two coordinated water mol­ecules, in a distorted octahedral geometry. The 4,4′‐bi­pyridine solvent molecule is not involved in coordination but is linked by an N—H⋯N hydrogen bond to the neutral [Co(C5H3N2O4)2(H2O)2] mol­ecule. Both mol­ecules are located on inversion centers. The crystal packing is stabilized by N—H⋯N and O—H⋯O hydrogen bonds, which produce a three‐dimensional hydrogen‐bonded network. Offset π–π stacking interactions between the pyridine rings of adjacent 4,4′‐bi­pyridine molecules were observed, with a face‐to‐face distance of 3.345 (1) Å.  相似文献   

3.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

4.
The asymmetric unit of the title one‐dimensional coordination polymer, catena‐poly­[[μ‐pyridine‐2,3‐di­carb­oxyl­ato‐1κO:2κ2N,O′‐bis­[di­aqua­cobalt(II)]]‐μ‐pyridine‐2,3‐di­carboxyl­ato‐1κ2N,O:2κO′:1′κO′], [Co(C7H3NO4)(H2O)2]n, is composed of a cobalt(II) ion, a pyridine‐2,3‐di­carboxyl­ate dianion and two water mol­ecules. The polymer has a zigzag structure consisting of a chain of edge‐fused rings, and the polymer chains are linked by O—H⃛O hydrogen bonds into a three‐dimensional framework.  相似文献   

5.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

6.
The crystal structure of the title complex, [Cu(C7H8N4)2(H2O)2](ClO4)2, consists of a discrete centrosymmetric [Cu(C7H8N4)2(H2O)2]2+ cation and two perchlorate anions. The CuII centre is six‐coordinated by four N donors from the two pyrazole rings [Cu—N 1.998 (2) and 2.032 (3) Å] and two O atoms from the water mol­ecules occupying the apical sites [Cu—O 2.459 (3) Å]. The coordination geometry of the complex can be described as octahedral. There is a unique three‐dimensional network in which the perchlorate units are linked by a combination of strong O—H?O and weak C—H?O hydrogen bonds.  相似文献   

7.
The synthesis of coordination polymers or metal–organic frameworks (MOFs) has attracted considerable interest owing to the interesting structures and potential applications of these compounds. It is still a challenge to predict the exact structures and compositions of the final products. A new one‐dimensional coordination polymer, catena‐poly[[[bis{1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κN3}zinc(II)]‐μ‐hexane‐1,6‐dicarboxylato‐κ4O1,O1′:O6,O6′] monohydrate], {[Zn(C6H8O4)(C9H8N6)2]·H2O}n, has been synthesized by the reaction of Zn(Ac)2 (Ac is acetate) with 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) and adipic acid (H2adi) at room temperature. In the polymer, each ZnII ion exhibits an irregular octahedral ZnN2O4 coordination geometry and is coordinated by two N atoms from two symmetry‐related bimt ligands and four O atoms from two symmetry‐related dianionic adipate ligands. ZnII ions are connected by adipate ligands into a one‐dimensional chain which runs parallel to the c axis. The bimt ligands coordinate to the ZnII ions in a monodentate mode on both sides of the main chain. In the crystal, the one‐dimensional chains are further connected through N—H…O hydrogen bonds, leading to a three‐dimensional supramolecular architecture. In addition, the title polymer exhibits fluorescence, with emissions at 334 and 350 nm in the solid state at room temperature.  相似文献   

8.
Single‐crystal X‐ray diffraction analysis of poly[bis(μ2‐5‐carboxy‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:O5)copper(II)], [Cu(C8H9N2O4)2)]n, indicates that one carboxylic acid group of the 2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PDI) ligand is deprotonated. The resulting H2PDI anion, acting as a bridge, connects the CuII cations to form a two‐dimensional (4,4)‐connected layer. Adjacent layers are further linked through interlayer hydrogen‐bond interactions, resulting in a three‐dimensional supramolecular structure.  相似文献   

9.
The title compound, 2C6H8NO+·SeO42−·2H2O, contains 4‐hydroxyanilinium cations, selenate(VI) anions and water molecules. One of the two independent cations is nearly planar (excluding the ammonium H atoms), while the other is markedly nonplanar, with the hydroxy and ammonium groups displaced from the plane of the benzene ring. This results from the antiparallel orientation of the cations, which interact through oppositely polarized ammonium and hydroxy groups. Ionic and hydrogen‐bonding interactions join the oppositely charged units into a three‐dimensional network. This work demonstrates the usefulness of 4‐aminophenol in the crystal engineering of organic–inorganic hybrid compounds.  相似文献   

10.
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

11.
Subtle modifications of N‐donor ligands can result in complexes with very different compositions and architectures. In the complex catena‐poly[[bis{1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole‐κN 3}copper(II)]‐μ‐benzene‐1,3‐dicarboxylato‐κ3O 1,O 1′:O 3], {[Cu(C8H4O4)(C10H9N5)2(H2O)]·2H2O}n , each CuII ion is six‐coordinated by two N atoms from two crystallographically independent 1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole (bmi) ligands, by three O atoms from two symmetry‐related benzene‐1,3‐dicarboxylate (bdic2−) ligands and by one water molecule, leading to a distorted CuN2O4 octahedral coordination environment. The CuII ions are connected by bridging bdic2− anions to generate a one‐dimensional chain. The bmi ligands coordinate to the CuII ions in monodentate modes and are pendant on opposite sides of the main chain. In the crystal, the chains are linked by O—H…O and O—H…N hydrogen bonds, as well as by π–π interactions, into a three‐dimensional network. A thermogravimetric analysis was carried out and the fluorescence behaviour of the complex was also investigated.  相似文献   

12.
In the title cadmium chloride salt, (C3H5N4O2)4[CdCl6]·4H2O, the asymmetric unit comprises two N‐protonated 5‐amino‐3‐carboxy‐4H‐1,2,4‐triazol‐1‐ium cations, half a [CdCl6]4− anion and two molecules of water. The Cd2+ cation is located on a centre of inversion and is coordinated by six chloride anions, forming a distorted octahedron. In the crystal structure, alternating layers of cations and anions are arranged along the [101] direction, forming a three‐dimensional supramolecular network via a combination of hydrogen‐bonding and aromatic stacking interactions.  相似文献   

13.
In the title compound, [Mn(C5H3N2O4)2(H2O)2], the MnII atom lies on an inversion centre, is trans‐coordinated by two N,O‐bidentate 1H‐imidazole‐4,5‐di­carboxyl­ate monoanionic ligands [Mn—O = 2.202 (3) Å and Mn—N = 2.201 (4) Å] and two water mol­ecules [Mn—O = 2.197 (4) Å], and exhibits a distorted octahedral geometry, with adjacent cis angles of 76.45 (13), 86.09 (13) and 89.20 (13)°. The complete solid‐state structure can be described as a three‐dimensional supramol­ecular framework, stabilized by extensive hydrogen‐bonding interactions involving the coordinated water mol­ecules, the carboxy O atoms and the protonated imidazole N atoms of the imidazole‐4,5‐di­carboxyl­ate ligands.  相似文献   

14.
Imidazole‐4,5‐dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen‐bonding donors and acceptors. A new one‐dimensional coordination polymer, namely catena‐poly[[diaquacadmium(II)]‐μ3‐2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2]n or [Cd(H2Phbidc)1/2(H2O)2]n, has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six‐coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six‐coordinated by two N atoms and two O atoms from two symmetry‐related H2Phbidc4− ligands and by two O atoms from two symmetry‐related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one‐dimensional chain which runs parallel to the b axis. In the crystal, the one‐dimensional chains are connected through hydrogen bonds, generating a two‐dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three‐dimensional structure in the solid state.  相似文献   

15.
Two polymorphs of biphenyl‐4,4′‐diaminium bis(3‐carboxy‐4‐hydroxybenzenesulfonate) dihydrate, C12H14N22+·2C7H5O6S·2H2O, have been obtained and crystallographically characterized. Polymorph (I) crystallizes in the space group P21/c with Z′ = 2 and polymorph (II) in the space group P with Z′ = 0.5. The benzidinium cation in (II) is located on a crystallographic inversion centre. In both (I) and (II), the sulfonic acid H atoms are transferred to the benzidine N atoms, forming dihydrated 1:2 molecular adducts (base–acid). In the crystal packings of (I) and (II), the component ions are linked into three‐dimensional networks by combinations of X—H...O (X = O, N and C) hydrogen bonds. In addition, π–π interactions are observed in (I) between inversion‐related benzene rings [centroid–centroid distances = 3.632 (2) and 3.627 (2) Å]. In order to simplify the complex three‐dimensional networks in (I) and (II), we also give their rationalized topological analyses.  相似文献   

16.
In the title complex, poly[copper(II)‐di‐μ2‐thio­cyanato‐μ2‐1,4‐bis­(1,2,4‐triazol‐1‐ylmeth­yl)benzene], [Cu(NCS)2(C12H12N6)]n, the CuII atom lies on an inversion centre in a tetra­gonally distorted octa­hedral environment. Four N atoms from thio­cyanate and 1,4‐bis­(1,2,4‐triazol‐1‐ylmeth­yl)benzene (bbtz) ligands fill the equatorial positions, and S atoms from symmetry‐related thio­cyanate ligands fill the axial positions. The benzene ring of the bbtz ligand lies about an inversion centre. Single thio­cyanate bridges link the CuII atoms into two‐dimensional sheets containing an unprecedented 16‐membered [Cu4(μ‐NCS‐N:S)4] ring. The bbtz ligands further link the two‐dimensional sheets into a three‐dimensional network.  相似文献   

17.
The title compound, C21H23ClN4O2·0.5H2O, contains two independent mol­ecules in the asymmetric unit. In each mol­ecule the piperazine ring adopts a chair conformation; the deviations of the piperazine N atoms from the best plane through the remaining four C atoms are ?0.678 (3) and 0.662 (3) Å in mol­ecule A, and 0.687 (3) and ?0.700 (3) Å in mol­ecule B. The mol­ecules are linked by two hydrogen bonds of the O—H?N type involving the O atom of the water mol­ecule of crystallization.  相似文献   

18.
The title compound, poly[[μ4‐5‐carboxy‐4‐carboxylato‐2‐(pyridin‐4‐yl)‐1H‐imidazol‐1‐ido]disilver(I)], [Ag2(C10H5N3O4)]n, was synthesized by reacting silver nitrate with 2‐(pyridin‐4‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyIDC) under hydrothermal conditions. The asymmetric unit contains two crystallographically independent AgI cations and one unique HPyIDC2− anion. Both AgI cations are three‐coordinated in distorted T‐shaped coordination geometries. One AgI cation is coordinated by one N and two O atoms from two HPyIDC2− anions, while the other is bonded to one O and two N atoms from two HPyIDC2− anions. It is interesting to note that the HPyIDC2− group acts as a μ4‐bridging ligand to link the AgI cations into a three‐dimensional framework, which can be simplified as a diamondoid topology. The thermal stability and photoluminescent properties of the title compound have also been studied.  相似文献   

19.
The title compound, catena‐poly[­[bromo­copper(II)]‐μ‐(quin­olin‐8‐yl­oxy)­acetato‐κ4N,O,O′:O′′], [CuBr(C11H8NO3)]n, is a novel carboxyl­ate‐bridged one‐dimensional helical copper(II) polymer. The metal ion exhibits an approximately square‐pyramidal CuBrNO3 coordination environment, with the three donor atoms of the ligand and the bromide ion occupying the basal positions, and an O atom belonging to the carboxyl­ate group of an adjacent mol­ecule in the apical site. Carboxyl­ate groups are mutually cis oriented, and each antianti carboxyl­ate group bridges two copper(II) ions via one apical and one basal position [Cu⋯Cu = 5.677 (1) Å], resulting in the formation of a helical chain along the crystallographic b axis.  相似文献   

20.
The two title compounds of 2,2′‐biimidazole (Bim) with 5‐sulfosalicylic acid (5‐H2SSA) and 2,2′‐bibenzimidazole (Bbim) with 5‐H2SSA are 1:2 organic salts, viz. C6H8N42+·2C7H5O6S, (I), and C14H12N42+·2C7H5O6S·3H2O, (II). The cation of compound (I) lies on a centre of inversion, whereas that of (II) lies on a twofold axis. Whilst compound (I) is anhydrous, three water molecules are incorporated into the crystal structure of (II). The substitution of imidazole H atoms by other chemical groups may favour the incorporation of water molecules into the crystal structure. In both compounds, the component cations and anions adopt a homogeneous arrangement, forming alternating cation and anion layers which run parallel to the (001) plane in (I) and to the (100) plane in (II). By a combination of N—H...O, O—H...O and C—H...O hydrogen bonds, the ions in both compounds are linked into three‐dimensional networks. In addition, π–π interactions are observed between symmetry‐related benzene rings of Bbim2+ cations in (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号