首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moxifloxacin, a novel fluoro­quinolone with a broad spectrum of anti­bacterial activity, is available as the solvated monohydro­chloride salt 7‐[(S,S)‐2‐aza‐8‐azoniabicyclo­[4.3.0]non‐8‐yl]‐1‐cyclo­propyl‐6‐fluoro‐8‐meth­oxy‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylic acid chloride–water–methanol (2/1/1), C21H25FN3O4+·Cl·0.5H2O·0.5CH3OH. The asymmetric unit contains two cations, two chloride ions, a mol­ecule of water and one methanol mol­ecule. The two cations adopt conformations that differ by an almost 180° rotation with respect to the piperidinopyrrolidine side chain. The cyclo­propyl ring and the meth­oxy group are not coplanar with the quinoline ring system. The carboxylic acid function, the protonated terminal piperidyl N atom, the water mol­ecule, the chloride ion and the methanol mol­ecule participate in O—H⋯O, O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonding, linking the mol­ecules into extended two‐dimensional networks.  相似文献   

2.
The structure of poly[3‐[(4‐amino‐2‐methylpyrimidin‐1‐ium‐5‐yl)meth­yl]‐5‐(2‐hydroxy­ethyl)‐4‐methyl­thia­zolium octa‐μ‐bromo/chloro­(4.4/3.6)‐tricadmate(II)], {(C12H18N4OS)[Cd3 Br4.41Cl3.59]}n consists of hydrogen‐bonded thia­mine mol­ecules and polymeric cadmium bromide/chloride anions in an organic–inorganic hybrid fashion. The one‐dimensional anion ribbons are formed by edge‐sharing octa­hedra and vertex‐sharing tetra­hedra. Thia­mine mol­ecules adopting the S conformation are linked to anions via three types of inter­actions, namely an N(amino)—H⋯anion⋯thia­zolium bridging inter­action, an N(pyrimidine)—H⋯anion hydrogen bond and an O(hydr­oxy)—H⋯anion hydrogen bond.  相似文献   

3.
The title compound, 3‐[(4‐amino‐2‐methyl­pyrimidin‐5‐yl)­meth­yl]‐5‐(2‐hydroxy­eth­yl)‐4‐methyl­thia­zolium tetra­phenyl­borate monohydrate, C12H17N4OS+·C24H20B·H2O, is a salt in which the thiamine cations are linked by hydrogen bonds into a two‐dimensional network having (4,4)‐topology. The stacked sheets form channels, which are occupied by the anions; the cations and anions are linked by C—H⋯π(arene) hydrogen bonds.  相似文献   

4.
In 1‐adamantyl‐2,8,9‐trioxa‐5‐aza‐1‐germabicyclo­[3.3.3]undecane or 1‐adamantylgermatrane, [Ge(C10H15)(C6H12NO3)], (I), and (2,8,9‐trioxa‐5‐aza‐1‐germabicyclo­[3.3.3]undecan‐1‐yl)methyl N‐cyclo­hexyl­carbamate or [(germatran‐1‐yl)meth­yl] N‐cyclo­hexyl­carbamate, [Ge(C6H12NO3)(C8H14NO2)], (II), the Ge atoms are characterized by trigonal–bypiramidal configurations. The Ge⋯N distances [2.266 (3) and 2.206 (3) Å in (I) and (II), respectively] are among the longest observed in germatranes. The significant distortion of the apical N—Ge—C angle in (II) is caused by crystal packing effects.  相似文献   

5.
The two title ethoxy­carbonyl­methoxy derivatives of calix­[4]­arene, namely diethyl 2,4‐di­hydroxy­calix­[4]­arene‐1,3‐diyldi(oxy­ace­tate), C36H36O8, (I), and tetraethyl ­calix­[4]­arene‐1,2,3,4‐tetra­yltetra­(oxy­acetate), C44H48O12, (II), form two different conformations, viz. a cone in (I), where intramol­ecular hydrogen bonds are formed through OH groups in a partially substituted calix­[4]­arene, and a 1,3‐alternate form of a completely substituted calix­[4]­arene in (II). A unique three‐dimensional array of mol­ecules exists in (II), with the channels extended along the entire crystal.  相似文献   

6.
Compounds (2R*,3S*)‐1‐(3,4‐dimethoxy­phen­yl)‐3‐{3‐meth­oxy‐2‐[(2R*)‐tetra­hydro­pyran‐2‐yl­oxy]phen­yl}‐2,3‐ep­oxy‐1‐propanone, C23H26O7, (I), and trans‐1‐(3,4‐dimethoxy­phen­yl)‐3‐[3‐meth­oxy‐2‐(methoxy­methoxy)­phen­yl]‐2,3‐ep­oxy‐1‐propanone, C20H22O7, (II), were obtained on epoxidation of chalcones. The stereochemistries of (I) and (II) were elucidated. In both compounds, the substituents on the oxirane ring are trans‐oriented. Compound (I) was obtained together with a diastereometric form that differs from (I) with respect to the configuration of the asymmetric C atom in the tetra­hydro­pyran group. The geometries of the substituted oxirane rings of (I) and (II) are very similar. The hydrogen‐bonding patterns, mediated via weak C—H⋯O inter­actions, differ considerably. The crystal structures of (I) and (II) are compared with those of related chalcone epoxides. The conversion of (I) and (II) into lignin‐related phenyl­coumarans is discussed.  相似文献   

7.
Three cage‐like polycyclic compounds, viz.exo‐8‐(trifluoro­meth­yl)­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecan‐endo‐8‐ol, C12H13F3O, 5‐(trifluoro­meth­yl)‐4‐oxahexa­cyclo­[5.4.1.02,6.03,10.05,9.08,11]­dodecan‐3‐ol, C12H11F3O2, and N‐[exo‐11‐(trifluoro­meth­yl)‐endo‐11‐(trimethyl­sil­yl­oxy)­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecan‐8‐yl­idene]aniline meth­anol solvate, C21H24F3NOSi·CH4O, were obtained from the corresponding oxo derivatives by nucleophilic trifluoro­methyl­ation with (tri­fluorometh­yl)trimethyl­silane in 1,2‐dimethoxy­ethane solution in the presence of CsF. The crystal structures show that the addition of trifluoro­methanide occurs exclusively from the exo face of the polycyclic ketones. Further examination of the crystal structures, together with that of the starting penta­cyclo­[5.4.0.02,6.03,10.05,9]undecane‐8,11‐dione, C11H10O2, showed that increasing substitution at the 8‐ and/or 11‐positions in the cage mol­ecules increases the non‐bonded intra­molecular C·C distances at the mouth of the cage and changes the puckering of the five‐membered rings involving the 8‐ and 11‐positions from an envelope towards a distorted half‐chair conformation. Inter­molecular co‐operative O—H·O hydrogen bonds in the endo‐8‐ol compound link the mol­ecules into tetra­mers.  相似文献   

8.
In the crystal structures of 4,6‐di­methyl­thio‐1‐[3‐(4,6‐di­methyl­thio‐2H‐pyra­zolo­[3,4‐d]­py­rimi­din‐2‐yl)­propyl]‐1H‐py­ra­­zolo­[3,4‐d]­py­rimi­dine, C17H20N8S4, and 1‐[4‐(4‐meth­oxy‐6‐methyl­thio‐1H‐pyra­zolo­[3,4‐d]py­rimi­din‐1‐yl)­butyl]‐5‐meth­yl‐6‐methyl­thio‐4,5‐di­hydro‐1H‐pyra­zolo­[3,4‐d]py­rimi­din‐4‐one, C18H22N8O2S2, only intermolecular stacking due to aromatic π–π interactions between pyrazolo­[3,4‐d]­pyrimidinerings is present.  相似文献   

9.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

10.
The crystal structures of two proton‐transfer compounds of 3‐carb­oxy‐4‐hydroxy­benzene­sulfonic acid (5‐sulfosalicylic acid) with the aromatic polyamines 2,6‐diamino­pyridine [namely 2,6‐diamino­pyridinium 3‐carb­oxy‐4‐hydroxy­benzene­sulfonate monohydrate, C5H8N3+·C7H5O6S·H2O, (I)] and 1,4‐phenyl­ene­diamine [namely 1,4‐phenyl­ene­diaminium 3‐carboxyl­ato‐4‐hydroxy­benzene­sulfonate, C6H10N22+·C7H4O6S2−, (II)] have been determined. Both compounds feature extensively hydrogen‐bonded three‐dimensional layered polymer structures having significant inter­layer π–π inter­actions between the cation and anion species. In (I), the pyridine N atom of the Lewis base is protonated and forms a direct hydrogen‐bonding inter­action with the water mol­ecule, which together with the two amine groups of the cation and the carboxylic acid group of the anion also give additional inter­actions with O‐atom acceptors of the sulfonate group. In (II), a dianionic species results from deprotonation of both the sulfonic and the carboxylic acid groups, and all available O‐atom acceptors inter­act with all dication donors, which lie about inversion centres.  相似文献   

11.
In the crystal structure of the title compound, bis­(2‐amino­pyrimidine‐κN1)bis­[6‐meth­yl‐1,2,3‐oxathia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]copper(II), [Cu(C4H4NO4S)2(C4H5N3)2], the first mixed‐ligand complex of acesulfame, the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and by the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two amino­pyrimidine (ampym) ligands and by the weakly basic carbonyl O atoms of the acesulfamate ligands, while the more basic deprotonated N atoms of these ligands are in the elongated axial positions with a strong misdirected valence. The crystal is stabilized by pyrimidine ring stacking and by inter­molecular hydrogen bonding involving the NH2 moiety of the ampym ligand and the carbon­yl O atom of the acesulfamate moiety.  相似文献   

12.
Three new palladium complexes containing a difunctional P,N‐chelate, namely tris­(chloro­{[1‐methyl‐1‐(6‐methyl‐2‐pyridyl)ethoxy]diphenylphospine‐κ2N,P}methyl­palladium(II)chloro­form solvate, 3[Pd(CH3)Cl(C21H22NOP)]·CHCl3, (III), dichloro­[2‐(2,6‐dimethyl­phen­yl)‐6‐(diphenyl­phosphinometh­yl)­pyridine‐κ2N,P]palladium(II), [PdCl2(C26H24NP)], (IV), and chloro­[2‐(2,6‐dimethyl­phen­yl)‐6‐(diphenyl­phos­phino­meth­yl)pyridine‐κ2N,P]methyl­palladium(II), [Pd(CH3)Cl(C26H24NP)], (V), are reported. Geometric data and the conformations of the ligands around the metal centers, as well as slight distortions of the Pd coordination environments from idealized square‐planar geometry, are discussed and compared with the situations in related compounds. Non‐conventional hydrogen‐bond inter­actions (C—H⋯Cl) have been found in all three complexes. Compound (III) is the first six‐membered chloro–meth­yl–phosphinite P,N‐type PdII complex to be structurally characterized.  相似文献   

13.
The crystal structures of quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate trihydrate, C9H8N+·C7H5O6S·3H2O, (I), 8‐hydroxy­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate monohydrate, C9H8NO+·C7H5O6S·H2O, (II), 8‐amino­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate dihydrate, C9H9N2+·C7H5O6S·2H2O, (III), and 2‐carboxy­quinolinium 3‐carboxy‐4‐hydroxy­benzene­sulfonate quinolinium‐2‐carboxylate, C10H8NO2+·C7H5O6S·C10H7NO2, (IV), four proton‐transfer compounds of 5‐sulfosalicylic acid with bicyclic heteroaromatic Lewis bases, reveal in each the presence of variously hydrogen‐bonded polymers. In only one of these compounds, viz. (II), is the protonated quinolinium group involved in a direct primary N+—H⋯O(sulfonate) hydrogen‐bonding interaction, while in the other hydrates, viz. (I) and (III), the water mol­ecules participate in the primary intermediate interaction. The quinaldic acid (quinoline‐2‐carboxylic acid) adduct, (IV), exhibits cation–cation and anion–adduct hydrogen bonding but no direct formal heteromolecular interaction other than a number of weak cation–anion and cation–adduct π–π stacking associations. In all other compounds, secondary interactions give rise to network polymer structures.  相似文献   

14.
In the crystal structure of 2‐acetamido‐N‐benz­yl‐2‐(methoxy­amino)acetamide (3L), C12H17N3O3, the 2‐acetyl­amino­acetamide moiety has a linearly extended conformation, with an inter­planar angle between the two amide groups of 157.3 (1)°. In 2‐acetamido‐N‐benz­yl‐2‐[meth­oxy(meth­yl)­amino]­acetamide (3N), C13H19N3O3, the planes of the two amide groups inter­sect at an angle of 126.4 (4)°, resulting in a chain that is slightly more bent. The replacement of the methoxy­amino H atom of 3L with a methyl group to form 3N and concomitant loss of hydrogen bonding results in some positional/thermal disorder in the meth­oxy­(methyl)­amino group. In both structures, in addition to classical N—H⋯O hydrogen bonds, there are also weak non‐standard C—H⋯O hydrogen bonds. The hydrogen bonds and packing inter­actions result in planar hydro­philic and hydro­phobic areas perpendicular to the c axis in 3L and parallel to the ab plane in the N‐meth­yl derivative. Stereochemical comparisons with phenytoin have identified two O atoms and a phenyl group as mol­ecular features likely to be responsible for the anticon­vulsant activities of these compounds.  相似文献   

15.
The furocoumarin 1,2‐di­hydro‐2‐(1,2‐di­hydroxy­prop‐2‐yl)‐8H‐furo­[2,3‐h]­benzo­pyran‐8‐one crystallizes from methanol–water as the monohydrate C14H14O5·H2O. Both chiral centers have the S configuration. Both OH groups and both H atoms of the water mol­ecule form intermolecular hydrogen bonds with O?O distances in the range 2.7686 (18)–2.8717 (18) Å.  相似文献   

16.
The crystal structures of three proton‐transfer compounds of 5‐sulfosalicylic acid (3‐carboxy‐4‐hydroxy­benzene­sulfonic acid) with 4‐X‐substituted anilines (X = F, Cl and Br), namely 4‐fluoro­anilinium 5‐sulfosalicylate (3‐carboxy‐4‐hydroxybenzenesulfonate) monohydrate, C6H7FN+·C7H5O6S·H2O, (I), 4‐chloro­anilinium 5‐sulfosalicylate hemihydrate, C6H7ClN+·C7H5O6S·0.5H2O, (II), and 4‐bromo­anilinium 5‐sulfosalicylate monohydrate, C6H7BrN+·C7H5O6S·H2O, (III), have been determined. The asymmetric unit in (II) contains two formula units. All three compounds have three‐dimensional hydrogen‐bonded polymeric structures in which both the water molecule and the carboxylic acid group are involved in structure extension. With both (II) and (III), which are structurally similar, the common cyclic (8) dimeric carboxylic acid association is present, whereas in (I), an unusual cyclic (8) association involving all three hetero‐species is found.  相似文献   

17.
The title compound, 2‐hydroxy­phenyl 5‐(pyrrol‐2‐yl)‐3H‐pyrrolizin‐6‐yl ketone, C18H14N2O2, was isolated from the base‐catalyzed 1:2 condensation of 2‐hydroxy­aceto­phenone with pyrrole‐2‐carbaldehyde. The pyrrole N—H and hydroxy­benzoyl O—H groups are hydrogen bonded to the benzoyl O atom. The allyl­ic C=C double bond of the 3H‐pyrrolizine system is located between ring positions 1 and 2, the C atom at position 3 (adjacent to the N atom) being single bonded.  相似文献   

18.
The protected tripeptides benzyl N‐{2‐[N‐(tert‐butoxy­carbon­yl)­prol­yl]‐4‐hydroxy­prol­yl}glycinate or Boc–Pro–Hyp–Gly–OBzl, C24H33N3O7, and benzyl N‐{2‐[N‐(tert‐butoxy­carbon­yl)­alan­yl]‐4‐hydroxy­prol­yl}glycinate or Boc–Ala–Hyp–Gly–OBzl, C22H31N3O7, are the minimum repeating triplets found in collagen. Within the crystal structure of each are two independent peptide mol­ecules with similar structures. The peptides are arranged anti­parallel to one another and inter­act through hydrogen bonds involving the main chains and the 4‐hydroxy­prolyl groups. The structures exhibit characteristics of a triple helix, but the peptides tend to assume a sheet‐like structure.  相似文献   

19.
The title complex, [Cd2(C13H9Cl2N2O)2(NCS)2]n, is a novel thio­cyanate‐bridged polynuclear cadmium(II) compound. The CdII atom is six‐coordinated in a distorted octa­hedral configuration, with one O and two N atoms of one Schiff base mol­ecule and one terminal S atom of a bridging thio­cyanate ligand defining the equatorial plane, and one terminal N atom of another bridging thio­cyanate ligand and one O atom of another Schiff base mol­ecule occupying axial positions. Adjacent inversion‐related [2,4‐dichloro‐6‐(2‐pyridylmethyl­imino­meth­yl)phenolato]cadmium(II) moieties utilize bridging phenolate and thio­cyanate groups to form polymeric chains running along the b axis.  相似文献   

20.
The structure of the title compound, aqua­[μ‐(N1‐carboxylato­methyl­guanidino)­oxidoacetato](μ‐guanidino­acetic acid)­di­copper(II) nitrate dihydrate, [Cu2(C5H6N3O5)(C3H7N3O2)(H2O)]NO3·2H2O, contains two enantiomers of the di­copper(II) complex cation that comprise water, neutral zwitterionic guanidino­acetic acid and the trianion of (N1‐carboxy­methyl­guanidino)­hydroxy­acetic acid as ligands. Extensive hydrogen bonding creates three‐dimensional connectivity but is largely confined to layers that each contain both cation enantiomers. These layers are related to one another by crystallographic symmetry and are therefore identical in composition and connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号