首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report a novel utilization of periodic arrays of carbon nanotubes in the realization of diffractive photonic crystal lenses. Carbon nanotube arrays with nanoscale dimensions (lattice constant 400 nm and tube radius 50 nm) displayed a negative refractive index in the optical regime where the wavelength is of the order of array spacing. A detailed computational analysis of band gaps and optical transmission through the nanotubes based planar, convex and concave shaped lenses was performed. Due to the negative-index these lenses behaved in an opposite fashion compared to their conventional counter parts. A plano-concave lens was established and numerically tested, displaying ultra-small focal length of 1.5 μm (~2.3 λ) and a near diffraction-limited spot size of 400 nm (~0.61 λ).  相似文献   

2.
Aspheric lenses are the most common method for correcting for spherical aberrations but, in microlens production, highly-controlled lens profiles are hard to achieve. We demonstrate a technique for creating bespoke, highly-accurate aspheric or spherical profile silicon microlens moulds, of almost any footprint, using focused ion-beam milling. Along with this, we present a method of removing induced ion-beam damage in silicon, via a hydrofluoric acid etch, helping to recover the surface's optical and chemical properties.In this paper, we demonstrate that our milled and etched moulds have a roughness of 4.0–4.1 nm, meaning they scatter less than 1% of light, down to wavelengths of 51 nm, showing that the moulds are suitable to make lenses that are able to handle light from UV up to infra-red.Using empirical experiments and computer simulations, we show that increasing the ion-dose when milling increases the amount of gallium a hydrofluoric acid etch can remove, by increasing the degree of amorphisation within the surface. For doses above 3000 μC/cm2 this restores previous surface properties, reducing adhesion to the mould, allowing for a cleaner release and enabling higher quality lenses to be made.Our technique is used to make aspheric microlenses of down to 3 μm in size, but with a potential to make lenses smaller than 1 μm.  相似文献   

3.
The electronic absorption spectrum of acetone is revisited to evaluate the role of hot bands due to low lying torsional modes in the assignment of vibronic transitions. The UV–VUV photoabsorption spectrum of acetone is recorded in the energy region 3.5–11.8 eV at a resolution of ~4 meV at 4 eV and ~10 meV at 10 eV using synchrotron radiation. The absorption spectrum is dominated by richly structured Rydberg series (ns, np and nd) converging to the first ionization potential of acetone at 9.708 eV. Careful consideration of hot band contributions from torsional modes and symmetry selection rules have resulted in an improved set of vibronic assignments as compared to earlier room temperature work. Revised quantum defect values for some of the Rydberg transitions and a few new assignments in the nd series are also reported in this paper.  相似文献   

4.
A brief overview of previously obtained and novel data on the manifestations of an analogue of Franck–Hertz effect in photo- and cathodoluminescence of wide-gap inorganic materials is presented. On the example of NaCl:Tl+ and MgO:Cr3+ single crystals, the excitation processes of the luminescence of 6s2 Tl+ ions and 3d3 Cr3+ ions by 5–15 keV electrons or 5–20 eV photons at 6–420 K have been studied. The rapid processes of the direct energy transfer to Tl+ by hot conduction electrons or to Cr3+ centers by hot electrons and/or hot valence holes have been separated from rapid excitonic and more inertial electron–hole processes.  相似文献   

5.
Silicon microlenses are a very important tool for coupling terahertz (THz) radiation into antennas and detectors in integrated circuits. They can be used in a large array structures at this frequency range reducing considerably the crosstalk between the pixels. Drops of photoresist have been deposited and their shape transferred into the silicon by means of a Reactive Ion Etching (RIE) process. Large silicon lenses with a few mm diameter (between 1.5 and 4.5 mm) and hundreds of μm height (between 50 and 350 μm) have been fabricated. The surface of such lenses has been characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), resulting in a surface roughness of about ∼3 μm, good enough for any THz application. The beam profile at the focal plane of such lenses has been measured at a wavelength of 10.6 μm using a tomographic knife-edge technique and a CO2 laser.  相似文献   

6.
The effect of thermal and thermosonic treatments on the inactivation kinetics of polyphenol oxidase (PPO) in mushroom (Agaricus bisporus) was studied in 55–75 °C temperature range. In both the processes, the inactivation kinetics of PPO followed a first-order kinetics (R2 = 0.941–0.989). The D values during thermal inactivation varied from 112 ± 8.4 min to 1.2 ± 0.07 min while they varied from 57.8 ± 6.1 min to 0.88 ± 0.05 min during thermosonic inactivation at the same temperature range. The activation energy during thermal inactivation was found to be 214 ± 17 kJ/mol, while it was 183 ± 32 kJ/mol during thermosonic inactivation. The inactivating effect of combined ultrasound and heat was found to synergistically enhance the inactivation kinetics of PPO. The D values of PPO decreased by 1.3–3 times during thermosonic inactivation compared to the D values of PPO during thermal inactivation at the temperature range. Therefore, thermosonication can be further developed as an alternative to “hot break” process of mushroom.  相似文献   

7.
Schwarzschild microscope at 18.2 nm for diagnostics of hot electron transport in femtosecond laser-plasma interaction has been developed. Based on the third-order aberration theory the microscope is designed for numerical aperture of 0.1 and magnification of 10. Mo/Si multilayer films with peak throughput at 18.2 nm is designed and deposited by magnetron sputtering method. The 24 lp/mm copper mesh is imaged via Schwarzschild microscope, and resolutions of less than 3 μm are measured in 1.2 mm field. The diagnostics experiment of hot electron transport is performed on 286 TW SILEX-I laser facilities, and the spatial distribution of radiation caused by hot electron is imaged by Schwarzschild microscope.  相似文献   

8.
The adsorption and decomposition of methylamine on Ni(1 1 1), Ni(1 0 0), stepped Ni(1 1 1), and nitrogen atom modified Ni(1 0 0) (denoted N–Ni(1 0 0)) have been studied with the DFT–GGA method using the periodic slab models. The initial scissions of C–H, N–H and C–N bond are considered. The adsorption energies under the most stable configurations for the possible species and the activation energies for the possible initial elementary reactions involved are obtained in the present work. Through systematic exploring of the kinetics mechanism of methylamine decomposition on these four surfaces, it is found that the reactivity of these surfaces decreased with the order of stepped Ni(1 1 1) > Ni(1 0 0) > Ni(1 1 1) > N–Ni(1 0 0). This indicates that the reactivity is related to the openness of the surface, and the presence of nitrogen atom reduces the reactivity of the Ni(1 0 0). For the three reactions, the barriers decreased with the order of C–N > N–H > C–H on Ni(1 1 1) and Ni(1 0 0), whereas they decreased with the order of C–N > C–H > N–H on stepped Ni(1 1 1) and N–Ni(1 0 0).  相似文献   

9.
In this work, a design study of a three field-of-view (FOV) optical system for 8–12 μm imaging using a 288×4 focal plane array detector is presented. The detector pixel size is 25 μm×28 μm. The f/# of the detector is 1.76. In order to switch the FOVs, three different optical configurations are superimposed and all three configurations are optimized. The narrow and medium FOV switching is based on movement of the second negative lens of the afocal system, whereas the wide FOV is selected by inserting a mirror between the 4th and 5th lenses of the afocal system. By inserting a switching mirror, the objective part of the first configuration is blocked out; nevertheless the afocal of the wide FOV is activated. The imager part of the layout is common for all FOVs. Diffractive and aspheric surfaces are utilized to control chromatic and all other kinds of aberrations, reducing the total lens number. The final optical designs, together with their modulation transfer function (MTF) plots, are illustrated, exhibiting excellent performance in all three FOVs. More specifically, the paper emphasizes how the displacement of compensating lenses effect the MTF of the system and how automatic movements of the lenses are used to eliminate the defocusing problem under changing environmental conditions.  相似文献   

10.
Eckart Hasselbrink 《Surface science》2009,603(10-12):1564-1570
Chemical reactions at surface may dissipate energy exciting electron-hole pairs in the metal substrate. Direct detection of the chemically induced hot charge carriers may be achieved by measuring the tunnel current in Ta–TaOx–Au tunnel junctions when the Au top electrode is exposed to an atomic hydrogen beam. A current of 1 nA cm?2 was observed during a hydrogen exposure with a flux of 0.1 ML s?1. The transient is related to the reaction kinetics and allows us to identify the elementary reaction steps causing the electronic excitations which are monitored by the observed current. Using Pt as top electrode material a markedly different transient is observed. Applying a bias voltage to the sensor allows spectroscopy of the electronic excitations. The experiments provide detailed insights into the non-adiabaticity of various reaction steps at a surface.  相似文献   

11.
The effect of hot isostatically pressed (HIP) sintering on the microstructural property of alumina compacts fabricated by slip casting of a commercial alumina powder was experimentally investigated. The fully dense translucent alumina compacts consisting of micron-sized grain could be fabricated by atmospheric sintering at 1350 °C with soaking time of 2 h and further HIP-sintering at 1300 °C for 2 h in argon atmosphere. It was found that the increase in the relative density of the sintered alumina compacts was reasonably consistent with the Mackenzie–Shuttleworth model. Linear shrinkage of sintered compact was suppressed due to the controlled grain growth, resulting in a good translucency of the fabricated compacts.  相似文献   

12.
The thin-layer drying behavior of the municipal sewage sludge in a laboratory-scale hot air forced convective dryer assisted with air-borne ultrasound was investigated in between 70 and 130 °C hot air temperatures. The drying kinetics in the convective process alone were compared to that for ultrasound-assist process at three ultrasound powers (30, 90, 150 W). The average drying rates within whole drying temperature range at ultrasound powers of 30, 90 and 150 W increased by about 22.6%, 27.8% and 32.2% compared with the convective drying alone (without ultrasound). As the temperature increasing from 70 °C to 130 °C, there were maximum increasing ratios for the effective moisture diffusivities of the sewage sludge in both falling rate periods at ultrasonic power of 30 W in comparison with other two high powers. In between the ultrasound powers of 0 and 30 W, the effect of the power on the drying rate was significant, while its effect was not obvious over 30 W. Therefore, the low ultrasonic power can be just set in the drying process. The values of the apparent activation energy in the first falling rate period were down from 13.52 to 12.78 kJ mol−1, and from 17.21 to 15.10 kJ mol−1 for the second falling rate period with increasing the ultrasonic power from 30 to 150 W. The values of the apparent activation energy in two falling rate periods with the ultrasound-assist were less than that for the hot air convective drying alone.  相似文献   

13.
Synchrotron radiation based photoemission spectroscopy (SRPES) and low energy electron diffraction (LEED) are used to study the interaction between Ag atoms and the Si(1 1 1)1 × 1–H surface. At an Ag coverage of 0.063 monolayers (ML) on the Si(1 1 1)1 × 1–H surface, the Si 2p component corresponding to Si–H bonds decreases, and an additional Si 2p component appears which shifts to a lower binding energy by 109 meV with respect to the Si bulk peak. The new Si 2p component is also observed for 0.25 ML Ag on the Si(1 1 1)7 × 7 surface. These findings suggest that Ag atoms replace the H atoms of the Si(1 1 1)1 × 1–H surface and form direct Ag–Si bonds. Contrary to the widely accepted view that there is no chemical interaction between Ag particles and the H-passivated Si surface, these results are in good agreement with recent first-principles calculations.  相似文献   

14.
In this paper, a mechanical Q-switching is used in radio frequency (RF) excited waveguide CO2 laser to obtain high pulse repetition frequency (PRF) laser. The Q-switching system includes two confocal ZnSe lenses and a high speed mechanical chopper, which is inserted into the cavity. The peak power is up to 730 W and the pulse width 200 ns at the highest PRF 20 kHz. The laser also has the advantages of compact, small-volume, and low-cost.  相似文献   

15.
The magnetic properties and microstructure of electrodeposited Ni–W thin films (0–11.7 at% W in composition) were studied. The film structures were divided into three regions: an FCC nanocrystalline phase (0–2 at% W), a transition region from FCC nanocrystalline to amorphous phase (2–7 at% W), and an amorphous phase (>7 at% W). In the transition region, (4–5 at% W) films with perpendicular magnetic anisotropy (PMA) were found. The saturation magnetization, magnetic anisotropy field, perpendicular magnetic anisotropy and perpendicular coercivity for a typical Ni–W film (4.5 at% W) were 420 kA/m, 451 kA/m, 230 kJ/m and 113 kA/m, respectively. The microstructure of Ni–W films with PMA is composed of isolated columnar crystalline grains (27–36 nm) with the FCC phase surrounded by the Ni–W amorphous phase. The appearance of the interface between the magnetic core of Ni crystalline grains and the Ni–W non-magnetic boundary layer seems to be the driving mechanism for the appearance of PMA. The origin of PMA in Ni–W films is mainly attributed to the magnetoelastic anisotropy associated with in-plane internal stress and positive magnetostriction. The secondary source of PMA is believed to be the magnetocrystalline anisotropy of 〈1 1 1〉 columnar grains and its shape magnetic anisotropy. It is concluded that Ni–W electrodeposited films (4–5 at% W) may be applicable for perpendicular magnetic recording media.  相似文献   

16.
《Current Applied Physics》2010,10(2):553-556
Single-step green synthesis of ZnSe quantum dots (QDs) from 1,2,3-selenadiazole and zinc acetate resulted in formation of high-quality mono-disperse ZnSe with engineered band-gap. The present method is a non-TOP green route where oleic acid is used as a surfactant. The size quantization effect can be monitored by UV–visible spectroscopy which shows in the range 370–387 nm (3.20–3.35 eV), a blue shift of about 70–90 nm with respect bulk ZnSe. Photoluminescence measurement revealed band-gap emission at ∼390 nm (3.18 eV, Stokes shift of <10 nm with FWHM <30 nm). Broadened XRD pattern indicated formation of cubic ZnSe and the estimation of particle size from the line broadening at 〈1 1 1〉 matched well the TEM analysis.  相似文献   

17.
A combination of infrared spectroscopy, X-ray photoelectron spectroscopy and density functional theory has been used to investigate the adsorption behavior of glycine at the Ge(100) ? 2 × 1 surface under ultrahigh vacuum conditions. Comparison of experimental and simulated IR spectra indicates that at 310 K, glycine adsorbs on Ge(100) ? 2 × 1 via O–H dissociation, with some fraction of the products also forming an N dative bond to a neighboring germanium atom. O–Ge dative bonding is not observed. As coverage increases, the surface concentration of the monodentate O–H dissociated adduct increases, while that of the N dative-bonded species appears constant. XPS data support and clarify the IR findings and reveal new insights, including the presence at higher coverage of a minor product that has undergone dual O–H and N–H dissociation. These findings are supported by the calculated energy diagrams, which indicate that the reaction of a glycine molecule on the Ge(100) ? 2 × 1 surface via O–H dissociation and interdimer N dative bonding is both kinetically and thermodynamically favorable and that N–H dissociation of this adduct is feasible at room temperature given incomplete thermal accommodation along the reaction pathway.  相似文献   

18.
We have designed slow light photonic crystal waveguides operating in a low loss and constant dispersion window of Δλ = 2 nm around λ = 1565 nm with a group index of ng = 60. We experimentally demonstrate a relatively low propagation loss, of 130 dB/cm, for waveguides up to 800 μm in length. This result is particularly remarkable given that the waveguides were written on an electron-beam lithography tool with a writefield of 100 μm that exhibits stitching errors of typically 10–50 nm. We reduced the impact of these stitching errors by introducing “slow–fast–slow” mode conversion interfaces and show that these interfaces reduce the loss from 320 dB/cm to 130 dB/cm at ng = 60. This significant improvement highlights the importance of the slow–fast–slow method and shows that high performance slow light waveguides can be realised with lengths much longer than the writing field of a given e-beam lithography tool.  相似文献   

19.
The application of power ultrasound (PuS) could be used as a novel technology with which to intensify thermal treatments using hot air. Mild thermal treatments have been applied to improve the soft texture of dry-cured ham caused by defective processing. In this regard, the aim of this study was to assess the kinetic intensification linked to the application of airborne PuS in the mild thermal treatment using hot air of dry-cured ham. For this purpose, vacuum packed cylindrical samples (2.52 ± 0.11 cm in diameter and 1.90 ± 0.14 cm in height) of dry-cured ham were heated using hot air at different temperatures (40, 45, 50 °C) and air velocities (1, 2, 3, 4, 6 m/s) with (22.3 kHz, 50 W) and without PuS application. Heat transfer was analyzed by considering that it was entirely controlled by conduction and the apparent thermal diffusivity was identified by fitting the model to the heating kinetics. The obtained results revealed that PuS application sped up the heat transfer, showing an increase in the apparent thermal diffusivity (up to 37%). The improvement in the apparent thermal diffusivity produced by PuS application was greater at high temperatures (50 °C) but negligible at high air velocities (6 m/s). Heating caused an increase in the hardness and elasticity of dry-cured ham, which would correct ham pastiness defects, while the influence of PuS on such textural parameters was negligible.  相似文献   

20.
《Current Applied Physics》2010,10(4):1076-1086
In this paper the effect of indium dopants on structure, optical, electrical and mechanical properties of ZnO nanorods are studied. The average surface potentials and the surface currents of ZnO:In nanorods were 0.25–0.84 mV and 2.2–200 MΩ-cm, respectively. The turn-on threshold field for the vertical ZnO nanorods was around 2–16 V μm−1. Emission current densities of 3.3–911.4 mA cm−2 were obtained for an electrical field of 60–160 V μm−1. The photoluminescence (PL) spectrum measured at 15–300 K showed that the intensity of the peak at 2.06 eV increased with decreasing temperature, while the peak at 2.06 eV further red shifted and the peak at 3.39 eV blue shifted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号