首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高琦璇  钟浩源  周树云 《物理》2022,51(5):310-318
以石墨烯为代表的层状材料具备显著区别于三维材料的新奇物理特性。更为重要的是,原子级平整的二维材料使得科学家们可以将不同的二维材料通过堆垛或者把相同的二维材料通过堆垛加扭转构成范德瓦耳斯异质结。通过层间耦合作用,可对异质结的能带结构和物理性质进行有效调控,从而衍生出单个二维材料所不具备的新奇物性。范德瓦耳斯异质结的能带调控极大地拓宽了二维材料的科学研究和应用前景。  相似文献   

2.
探索低维材料的新奇物性是当前凝聚态物理和材料科学基础研究的一个重要前沿.应变是调控低维材料物性的一个重要手段.相比于块体材料,低维材料通常具有良好的力学柔韧性,并表现出敏锐的结构-电子响应关系,因此可以通过结构变形对材料电子性质进行有效调控.本文主要目的是介绍二维材料中通过非均匀应变获得新奇物性的研究进展.主要讨论两个效应,即赝磁场效应和挠曲电效应.具体来说,通过解析理论、实验进展、计算模拟以及围绕这些效应的应用等方面介绍相关研究进展.从计算模拟的角度看,由于非均匀应变破坏了晶体的平移对称性,基于周期性边界条件的量子力学计算方法如第一性原理不再适用.本文将介绍一个专门用来模拟非均匀应变的原子级计算方法,即广义布洛赫方法,并简要介绍该方法的一些具体应用.  相似文献   

3.
量子材料的拓扑物态的研究是当前凝聚态物理的重要前沿.区别于局域对称性破缺对物质状态进行分类的传统方式,量子物态可以用微观体系波函数的拓扑结构进行分类.这些全新的拓扑物态有望颠覆传统的微电子学并进而推动拓扑电子学的迅猛发展.当前大部分理论和实验研究集中于研究量子材料的平衡态性质.周期性光场驱动下量子材料远离平衡态、而达到...  相似文献   

4.
物质拓扑态的发现是近年来凝聚态物理和材料科学的重大突破.由于存在不同于常规半导体的特殊拓扑量子态(如狄拉克费米子、外尔费米子、马约拉纳费米子等),拓扑量子材料通常能表现出一些新颖的物理特性(如量子反常霍尔效应、三维量子霍尔效应、零带隙的拓扑态、超高的载流子迁移率等),因而在低能耗电子器件和宽光谱光电探测器件领域具有重要...  相似文献   

5.
喻祥敏  谭新生  于海峰  于扬 《物理学报》2018,67(22):220302-220302
近年来,探索新的拓扑量子材料、研究拓扑材料的新奇物理性质成为凝聚态物理领域的一个热点.但是,由于合成、测量等手段的限制,人们难以在真实材料中实现和观测很多理论预言的材料及其物理性质,促使量子模拟日益成为研究量子多体系统的一个重要手段.作为全固态器件,超导量子电路是一个在扩展性、集成性、调控性上都具有巨大优势的人工量子系统,是实现量子模拟的重要方案.本文总结了利用超导量子电路对时间-空间反演对称性保护的拓扑半金属、Hopf-link半金属和Maxwell半金属等拓扑材料的量子模拟,显示出超导量子电路在模拟凝聚态物理系统方面具有广阔前景.  相似文献   

6.
首先综述了基于二维光催化剂的电子结构调控方式,包括厚度调节、元素掺杂、缺陷工程和异质结的设计等.其次,由于半导体异质结在减少光生电子空穴复合速度方面具有独特的优势,着重介绍了由二维材料与其它不同维数的半导体界面组成的异质结的研究进展.最后介绍了新型二维光催化材料在析氢、CO2还原、固氮和污染物降解等方面的应用.总结文献...  相似文献   

7.
超表面由亚波长尺度二维人工微结构构成,可以实现对光场振幅、相位、偏振等多参量进行调控,为光场调控提供了优良平台.二维材料作为一种新型层状结构材料,相对于三维体材料有着十分独特的光学和电学特性,其与超表面结合为纳米尺度平面光学器件的发展提供了新的可能.本文综述了基于原子层厚度的二维材料超表面发展,介绍了多种二维材料超表面...  相似文献   

8.
冯硝  徐勇  何珂  薛其坤 《物理》2022,51(9):624-632
近20年来,拓扑量子物态和材料已成为凝聚态物理领域最为重要、发展最快的前沿领域之一。文章简单回顾这一领域的研究进展,介绍包括拓扑材料体系、磁性拓扑材料、拓扑超导体及相关物理。这些材料涉及的研究范畴广泛,未来可能推动电子学、自旋电子学、光学等各个方向的基础研究和产业发展。  相似文献   

9.
随着芯片尺寸不断缩小,短沟道效应、热效应日趋显著.开发全新的量子材料体系以实现高性能芯片器件应用已成为当前科技发展的迫切需求.二维材料作为一类重要的量子材料,其天然具备原子层厚度和平面结构,能够有效克服短沟道效应并兼容当代微纳加工工艺,非常有望应用于新一代高性能器件方向.与硅基芯片发展类似,二维材料芯片级器件应用必须基于高质量、大尺寸的二维单晶材料制造.然而,由于二维材料的表界面特性,现有体单晶制备技术不能完全适用于单原子层结构的二维单晶制造.因此,亟需发展新的制备策略以实现大尺寸、高质量的二维单晶原子制造.有鉴于此,本文重点综述表界面调控二维单晶大尺寸制备技术发展现状,总结梳理了米级二维单晶原子制造过程中的3个关键调控方向,即单畴生长调控、单晶衬底制备和多畴取向控制.最后,系统展望了大尺寸二维单晶在未来规模化芯片器件方向的潜在应用前景.  相似文献   

10.
王仲锐  姜宇航 《物理学报》2022,(12):188-200
二维量子材料具有诸多新奇的电子态物性,又易受到外部因素的影响和调控,因此成为近年来凝聚态物理等研究领域的前沿课题之一.而当以不同的旋转角度和堆叠次序制备出二维量子材料的异质结时,莫尔超晶格的形成又进一步诱导了异质结电子能带结构的重整化,从而形成电子平带结构,再结合外加电场、磁场、应力场等外部条件,即可实现对材料整体新奇物性的设计与调控.本文主要围绕转角石墨烯及过渡金属硫族化合物异质结中的相关研究展开讨论,包括与平带物理相关的强关联效应、非常规超导现象、量子反常霍尔效应、拓扑相以及电子晶体等行为,并对未来的研究发展进行了展望.  相似文献   

11.
刘志锋  吕志恒  赵纪军 《物理》2023,52(9):613-624
石墨烯的发现引发了科学界探索新奇二维狄拉克材料的热潮。这类具有狄拉克线性能带色散特征的二维材料被认为是发展新物理,实现超高速、低能耗新型纳米器件的理想平台。文章首先回顾二维狄拉克材料研究的源起,然后从自旋轨道耦合作用的视角重点介绍四类代表性的二维狄拉克材料的研究进展,最后对相关领域进行总结和展望。  相似文献   

12.
徐依全  王聪 《物理学报》2020,(18):89-107
近年通信技术的飞跃,对光学设备的紧凑性、响应速度、工作带宽和控制效率提出新的挑战.石墨烯的发现,使得二维材料飞速发展,不断涌现出一系列新材料,如MXene、黑磷、过渡金属硫化物等.这些新型二维材料有着出色的非线性光学效应、强光-物质交互作用、超宽的工作带宽.利用其热光效应、非线性效应并结合光学结构,能够满足光通信中超快速的需求.紧凑、超快、超宽将会是未来二维材料全光器件的标签.本文重点综述基于二维材料的热光效应与非线性效应的全光器件,介绍光纤型的马赫-曾德尔干涉仪结构、迈克耳孙干涉仪结构、偏振干涉结构以及微环结构,最后阐述并回顾最新的进展,分析全光器件面临的挑战和机遇,提出全光领域的前景与发展趋势.  相似文献   

13.
许宏  孟蕾  李杨  杨天中  鲍丽宏  刘国东  赵林  刘天生  邢杰  高鸿钧  周兴江  黄元 《物理学报》2018,67(21):218201-218201
自从石墨烯被发现以来,机械解理技术已经成为制备高质量二维材料的重要方法之一,在二维材料本征物性的研究方面展现出了独特的优势.然而传统机械解理方法存在明显的不足,如制备效率低、样品尺寸小等,阻碍了二维材料领域的研究进展.近些年我们在机械解理技术方面取得了一系列的突破,独立发展了一套具有普适性的新型机械解理方法.这种新型机械解理方法的核心在于通过改变解理过程中的多个参数,增强层状材料与基底之间的范德瓦耳斯相互作用,从而提高单层样品的产率和面积.本文着重以石墨烯为例,介绍了该技术的过程和机理.相比于传统机械解理方法,石墨烯的尺寸从微米量级提高到毫米量级,面积提高了十万倍以上,产率大于95%,同时石墨烯依然保持着非常高的质量.这种新型机械解理方法具有良好的普适性,目前已经在包括MoS2,WSe2,MoTe2,Bi2212等几十种材料体系中得到了毫米量级以上的高质量单层样品.更重要的是,在解理过程中,通过调控不同的参数,可以在层状材料中实现一些特殊结构的制备,如气泡、褶皱结构等,为研究这些特殊材料体系提供了重要的物质保障.未来机械解理技术还有很多值得深入研究的科学问题,该技术的突破将会极大地推动二维材料领域的研究进展.  相似文献   

14.
近年来,二维材料独特的物理、化学和电子特性受到了越来越多的科研人员的关注.特别是石墨烯、黑磷和过渡金属硫化物等二维材料具有优良的光电性能和输运性质,使其在下一代光电子器件领域具有广阔的应用前景.本文将主要介绍二维材料在光电探测领域上的应用优势,概述光电探测器的基本原理和参数指标,重点探讨光栅效应与传统光电导效应的区别,...  相似文献   

15.
超透镜(Metalens)是结合了超表面原理和超薄平板光学原理制作的一类自身尺度在亚波长范围内,能够对光波前进行重塑的新兴人工光学器件。二维范德华材料的出现为超透镜光学器件提供了丰富的材料选择以及功能调控方面的可能。以石墨烯、过渡族金属硫族化合物等为典型代表的二维材料归功于其层间相对较弱的范德华相互作用,可通过机械剥离、化学气相沉积等方法获得原子层厚度平整的单晶,天然满足超透镜材料厚度尺寸要求,其自身以及溶于溶剂形成的二维液晶材料均具有优异的电学、光学、机械、磁性等丰富的物理特性,且性能高度可调控,使得基于二维材料的超透镜除能满足传统透镜的特性功能外,还有望通过包括静电调控等方式得到具有可调控的新奇物理特性。因此,对基于二维材料的超透镜的发展现状进行总结,并结合其材料结构特性进行相关的展望对该行业的发展是十分迫切的。本综述主要围绕二维材料超透镜展开,概述了该类透镜的研究进展,包括二维层状材料以及二维液晶材料、二维材料超透镜的潜在应用前景,以及对二维超透镜这一新兴研究领域未来的发展方向进行了适当的总结与展望。  相似文献   

16.
龙洋  任捷  江海涛  孙勇  陈鸿 《物理学报》2017,66(22):227803-227803
电子的量子自旋霍尔效应的发现推进了当今凝聚态物理学的发展,它是一种电子自旋依赖的具有量子行为的输运效应.近年来,大量的理论和实验研究表明,描述电磁波场运动规律的麦克斯韦方程组内禀了光的量子自旋霍尔效应,存在于界面的倏逝波表现出强烈的自旋与动量关联性.得益于新兴的光学材料:超构材料(metamaterials)的发展,不仅能够任意设定光学参数,同时也能引入很多复杂的自旋-轨道耦合机理,让我们能够更加清晰地了解和验证其中的物理机理.本文对超构材料中量子自旋霍尔效应做了简要的介绍,内容主要包括真空中光的量子自旋霍尔效应的物理本质、电单负和磁单负超构材料能带反转导致的不同拓扑相的界面态、拓扑电路系统中光量子自旋霍尔效应等.  相似文献   

17.
光与新型氧化物材料的相互作用及其应用   总被引:4,自引:0,他引:4  
郝建华 《物理》2001,30(7):420-425
文章概述了光与几种新型氧化物材料相互作用研究现状,应用和将来可能的发展方向,这些新型氧化物包括高温氧化物超导体,巨磁电阻材料和铁电体,介绍了光激发状态下氧化物的输运特性,电磁特性的变化规律,报道了近年来主要的实验方法和研究结果,总结了光与氧化物相互作用时有关光响应和光激发的可能机制,讨论了现有实验结果的潜在应用,指出了将来在材料工程,光电器件,信息技术等方面应用的研究方向。  相似文献   

18.
《现代物理知识》2014,(3):56-56
<正>最近,中国科学技术大学微尺度物质科学国家实验室和化学与材料科学学院教授曾杰研究组在拓扑绝缘体二维层状纳米材料Bi2Se3的结构设计、合成与生长机理研究方面取得新进展。研究人员对Bi2Se3晶体的成核及生长进行了动力学调控,通过引入螺旋位错首次实现了二维层状材料的螺旋生长,将材料由分立的层状转变成连续性的螺旋条带,从而获得了一  相似文献   

19.
周正  黄少云 《物理学报》2023,(1):273-286
串联耦合三量子点(serial triple quantum dots,STQD)体系在近十年来受到人们的广.关注,这不仅是提高量子点集成度的一个必然过程,更重要的是可以利用STQD中一些特定的电荷占据态来实现自旋量子比特的快速全电学调控.本文运用常相互作用模型,导出了与外部可观测物理量相关的STQD电化学势,借助数值模拟计算得到STQD在不同中间栅电压下的线性输运二维电荷稳态图(简称二维稳态图),着重研究STQD的各种电荷占据态之间的能量简并点(简称能量简并点),结合实验将STQD中的能量简并点归纳为三种类型,对这些能量简并点的深入理解可以指导实验高效地寻找STQD体系中适合量子计算的工作区.  相似文献   

20.
二维过渡金属硫化物(transition metal dichalcogenides, TMDCs)由于可实现从间接带隙到直接带隙半导体的转变,能带宽度涵盖可见光到红外波段,及二维限域所带来的优异光电特性,在集成光子以及光电器件领域受到了广泛的关注.最近随着二维材料基础非线性光学研究的深入,二维TMDCs也展现出了在非线性光学器件应用上的巨大潜能.本综述聚焦于二维层状TMDCs中关于二次谐波的研究工作.首先简述一些基本的非线性光学定则,然后讨论二维TMDCs中原子层数、偏振、激子共振、能谷等相关的二次谐波特性.之后将回顾这些材料二次谐波信号的调制及增强工作,讨论外加电场、应变、表面等离激元结构、纳米微腔等方法和手段的影响机理.最后进行总结和对未来本领域工作的展望.理解二维TMDCs二次谐波的产生机制及材料自身结构与外场调控机理,将对未来超薄的二维非线性光学器件的发展产生深远的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号