首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this article is to give some useful expressions for fading correction in practical situations as they can be encountered in radiation protection dosimetry monitoring, i.e. personal, environmental and clinical dosimetry. They are obtained considering the general case in which, for both first and second-order kinetics, during the experimental period of time two effects are in competition between them: one is the trapping rate due to the irradiation, the second is the detrapping rate which takes place at the same time, owing to thermal fading. Various practical situations are taken into consideration.  相似文献   

2.
Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 min to 60 days following exposure to a dose of up to 100 Gy. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 0.5 and 1 Gy. Three peaks were identified in the TL glow curve at roughly 110 °C, 205 °C, and 225 °C. The intensity of the 205 °C peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and no significant variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205 °C peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 3.3 Gy, a 100 Gy dose would still be detected 2.7E3 years after exposure. Here, we introduce the concept of intrinsic dosimetry, the measurement of the total absorbed dose received by the walls of a container containing radioactive material. The foreseen advantage of intrinsic dosimetry comes from considering the measured absorbed dose received by containers in concert with the characteristics (amount, type) of the source of that dose, the radioactive material contained within the walls of the container, in order to provide enhanced information about the history of an unknown sample in question. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management.  相似文献   

3.
The thermoluminescence (TL) response to gamma-ray irradiation of tooth enamel is reported. The tooth enamel was separated from dentine by using mechanical and physico-chemical procedures followed by grinding (grain size ∼100 μm) and etching. The TL was attributed to the recombination of radicals incorporated into or attached to the surface of hydroxyapatite crystals. The growth of the ∼380 °C TL peak with absorbed dose was examined with irradiated tooth enamel samples and reconstructed doses evaluated for tooth enamel samples from four human subjects.  相似文献   

4.
The in vivo biocompatibility of pure sapphire and borosilicate glass (BSG) implanted onto the cerebral cortex was studied via magnetic resonance imaging (MRI) and histopathology. Each implant was embedded onto the cortical surface of an adult rat brain for a total of 28 days. Rats underwent surgery with and without implants, and rats with purposely damaged cortical implant sites were also studied. Each animal was imaged via MRI before surgery as well as 10 and 28 days after the surgery. Histopathological results of animals were obtained on the 28th day to determine the specific effect on neurons. Despite the fact that sapphire has been widely used in a variety of medical implants, both MRI and histopathological results indicate that pure sapphire is not biocompatible with the cerebral cortex. On the contrary, BSG implants appear to be biocompatible with the cortical surface.  相似文献   

5.
To understand the behaviour of nuclear waste glass in groundwater, borosilicate glasses were placed in simulated groundwater for more than 200 days. The composition of the simulated groundwater was similar to that of the groundwater in Beishan (a potential nuclear waste site). The pH value of groundwater was adjusted to 7.5, and the ratio of the surface area of glass to the volume of the solution (SA/V) was set to 10?m?1. Solutions and bulk glasses were characterised to obtain the elemental behaviour and surface morphology of the glass/solution interface, which was named the alteration layer. The mean thicknesses of the alteration layer were 5.16?±?0.11?µm and 11.67?±?0.28?µm at 70°C and 90°C, respectively. A thicker alteration layer was attributed to the lower surface activation energy of the glass and a high ion exchange between K+ and Na+ in the interface between the glass surface and the solution. For the elemental behaviour, mobile species B and Na were depleted, while K and Ca from the solution were enriched in the alteration layer due to ion exchange. Network species Si decreased in the layer, leading to the corrosion of the backbone of the glass; however, species Al increased, which implied that some [SiO4] units were partially replaced by [AlO4] units. In this work, glass in groundwater suffered much more intense corrosion than that in de-ionised water.  相似文献   

6.
A detailed study of the morphology of nano-craters drilled in borosilicate glass by single shot femtosecond laser ablation near the ablation threshold has been performed by scanning electron microscopy, atomic force microscopy and scanning electron microscopy imaging after focused ion beam sectioning. The influence of the numerical aperture (NA = 0.4 and 0.8), the pulse energy (16 nJ < Ep < 600 nJ) and the position of the specimen surface into the focal region were systematically investigated, leading to nanometric or micrometric scales in every spatial dimension. The nanocrater’s size is not restricted by the diffraction limit but determined by the laser pulse stability and the material properties. If the beam is focused inside the glass, two craters are drilled, shaping very distinct morphologies. Their dimensions have been studied in details and different relationships have been proposed for the evolutions of the depths and of the various diameters of these craters as functions of the pulse energy, the numerical aperture and the position of specimen surface in the beam-material interaction region. It is suggested that the long, thin conical profile with very high aspect ratio of the secondary craters is due to a spontaneous reshaping of the beam which transforms the incoming Gaussian pulse into a Gaussian-Bessel pulse. As proposed in the developed model the geometry of the second craters seems to be connected with the one of the main craters.  相似文献   

7.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical.  相似文献   

8.
The state-of-the-art in the use of thermoluminescence for the measurement of energy imparted by ionizing radiation is discussed. Emphasis is on the advantages obtainable by the use of computerized glow curve analysis in (i) quality control, (ii) low dose environmental dosimetry, (iii) medical applications (especially precision) and microdosimetric applications, and (iv) mixed field ionization-density–dosimetry. Possible frontiers of future research are highlighted: (i) vector representation in glow curve analysis, (ii) combined OSL/TL measurements, (iii) detection of sub-ionization electrons, (iv) requirements for new TL materials and (v) theoretical subjects involving kinetic modeling invoking localized/delocalized recombination applied to dose response and track structure theory including creation of defects.  相似文献   

9.
This study demonstrates the energy response of thermoluminescent (TL) detectors based on YAlO3:Mn crystals. Experimental results of the relative sensitivity of YAlO3:Mn2+ detectors to various kinds of photon radiation (from 60Со, 131Cs, 192Ir, and 137Cs isotopes; X-ray from 220 kVp; and photon radiation from a linear accelerator (LINAC) at 5, 10, and 15 MV) agree with the theoretical energy response from Monte Carlo simulation. In addition to YAlO3 (YAP), energy response was calculated for other yttrium-containing oxides such as Y2O3, Y3Al5O12 (YAG), and Y4Al2O9 (YAM). A possibility of filtering (modification) of the energy response of high atomic number (Z) materials by the metallic filters was shown.  相似文献   

10.
The influence of deep traps on the 450 K thermoluminescence (TL) peak of Al2O3:C is studied. Depending upon the sample and on the degree of deep trap filling, features such as the TL width, area and height can vary considerably. These effects are interpreted to be due to: (a) sensitivity changes introduced by competition mechanisms involving deep electron and hole traps, and (b) the multiple component nature of the 450 K TL peak. The influence of the deep traps on the TL was studied using different excitation sources (beta irradiation or UV illumination), and step annealing procedures. Optical absorption measurements were used to monitor the concentration of F- and F+-centers. The data lead to the suggestion that the competing deep traps which become unstable at 800–875 K are hole traps, and that the competing deep traps which become unstable at 1100–1200 K are electron traps. Both the dose response of the TL signal and the TL sensitivity are shown to be influenced by sensitization and desensitization processes caused by the filling of deep electron and hole traps, respectively. Changes in the TL peak at low doses were also shown to be connected to the degree of filling of deep traps, emphasizing the influence of deep trap concentration and dose history of each sample in determining the TL properties of the material. Implications of these results for the optically stimulated luminescence properties are also discussed.  相似文献   

11.
It has been possible to perform the simultaneous determination of choline and glucose using the intrinsic fluorescence of the corresponding enzyme as an analytical signal. This can be done in two ways. First, for low glucose and choline concentrations (about 0.55 mM and 0.75 μM respectively) two differentiated signals, without mutual interference, are obtained for both analytes in the same measurement. Second, when glucose and choline concentrations are higher, a new model has been designed which permits the concentrations to be accurately determined in samples containing from 0.55 mM to 3.75 mM glucose and from 0.75 μM to 11.0 μM choline; the method has been applied to simultaneous glucose and choline determinations in serum samples with good results. This method gives a better performance than multivariate calibration based on Partial Least Squares Regression. The methodology here shown could be also used for the simultaneous determination of other pairs of analytes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Tellurite glasses of the system xWO3–75TeO2–(25 ? x)B2O3 (0 ≤ x ≤ 25 mol. %) were prepared and studied by differential thermal analysis to explore the effect of WO3 on their glass transition and crystallization kinetics. The crystallization kinetics was studied under non-isothermal conditions using the formal theory of transformations for heterogeneous nucleation. The crystallization results were analyzed and both the activation energy of the crystallization process and the crystallization mechanism characterized. The phases into which the glass crystallizes were identified by X-ray diffraction. Diffractograms of the transformed material indicate the presence of microcrystallites of α-tellurite, Te0.95W0.05O2.05, Te2W and B2O3 in the amorphous matrix.  相似文献   

13.
C. Dohare  A. Kumar 《Phase Transitions》2013,86(11-12):1064-1074
The calorimetric measurements have been made in glassy Se70Te30 and Se70Te28M2 (M?=?Ag, Cd, and Zn) alloys using non-isothermal differential scanning calorimetry technique to see the effects of Ag, Cd, and Zn additives on the glass transition kinetics of binary Se70Te30. From the heating rate dependence of glass transition temperature, T g, different kinetic parameters of glass transition have been evaluated. The composition dependence of glass transition temperature T g and the related activation energy (Et ) is also discussed.  相似文献   

14.
The effects of Sn and Ga additions on the glass forming ability(GFA)of(Al86La5Ni9)100 xSnx(x=0,0.2,0.3,0.5,0.7,1 and 2at.%)and(Al86La5Ni9)100 xGax(x=0,0.2,0.5,1 and 1.5 at.%)alloys were systematically investigated.Unlike common microalloying methods,both Sn and Ga have a positive heat of mixing with the main component of Al.Our analysis confirmed that proper Sn addition can suppress the strong formation ofα-Al and enhance the GFA due to the positive heat of mixing between Sn and Al and the large difference in their atomic sizes.While the addition of Ga to the base alloy acted as the nucleation cites forα-Al and accelerated precipitation of theα-Al phase,thus deteriorating the GFA.  相似文献   

15.
In this and the companion paper, we analyze the ±J Ising spin-glass model on the Bethe lattice with fixed uncorrelated boundary conditions. Phase diagrams are derived as a function of temperature vs. concentration of ferromagnetic bonds and, for a symmetric distribution of bonds, external field vs. temperature. In this part we characterize magnetized spin-glass (MSG) phases by divergence of an appropriate susceptibility: at zero field this signals the existence of an intermediate MSG phase; at nonzero field, this is used to identify the de Almeida-Thouless line.  相似文献   

16.
Effect of composition on the structure, spontaneous and stimulated emission probabilities of various 1.0 mol% Tm2O3 doped (1−x)TeO2+(x)WO3 glasses were investigated using Raman spectroscopy, ultraviolet-visible-near-infrared (UV/VIS/NIR) absorption and luminescence measurements.Absorption measurements in the UV/VIS/NIR region were used to determine spontaneous emission probabilities for the 4f-4f transitions of Tm3+ ions. Six absorption bands corresponding to the absorption of the 1G4, 3F2, 3F3 and 3F4, 3H5 and 3H4 levels from the 3H6 ground level were observed. Integrated absorption cross-section of each band except that of 3H5 level was found to vary with the glass composition. Luminescence spectra of the samples were measured upon 457.9 nm excitation. Three emission bands centered at 476 nm (1G43H6 transition), 651 nm (1G43H4 transition) and 800 nm (1G43H5 transition) were observed. Spontaneous emission cross-sections together with the luminescence spectra measured upon 457.9 nm excitation were used to determine the stimulated emission cross-sections of these emissions.The effect of glass composition on the Judd-Ofelt parameters and therefore on the spontaneous and the stimulated emission cross-sections for the metastable levels of Tm3+ ions were discussed in detail. The effect of temperature on the stimulated emission cross-sections for the emissions observed upon 457.9 nm excitation was also discussed.  相似文献   

17.
The effect of heat treatment parameters on the chemical composition and average size of CdS1−xSex nanocrystals obtained in borosilicate glass by diffusion-limited growth is studied by optical absorption and Raman scattering spectroscopy. An increase of selenium content from 0.75 to 0.83 in the nanocrystals with the heat treatment temperature and duration is observed. Three lowest-energy optical transitions in CdS1−xSex nanocrystals are assigned to corresponding electronic transitions based on the observed dependence of the confinement-related absorption maxima on the nanocrystal size.  相似文献   

18.
The present paper considers the formation of crystalline phases during solidification and crystallisation of the Zr53Cu21Al10Ni8Ti8 alloy. Solidification was carried out by a copper mould casting technique, which yielded a partially crystalline microstructure comprising a ‘big cube phase’ in a dendritic morphology and a bct Zr2Ni phase. Detailed high-resolution microscopy was carried out to determine possible mechanisms for the formation of the crystalline phases. Based on microstructural examinations, it was established that the dendrites grew by the attachment of atomistic ledges. The bct Zr2Ni phase, formed during solidification and crystallisation, showed various types of faults depending on the crystallite size, and its crystallography was examined in detail. It has been shown that the presence of these faults could be explained by anti-site occupancy in the bct lattice of the Zr2Ni phase.  相似文献   

19.
《Composite Interfaces》2013,20(2):207-218
This paper reports the second part of the results from the round robin test program proposed by the Society of Interfacial Materials Science (SIMS) to characterise the interlaminar fracture behaviour of E-glass woven fabric reinforced vinylester composites. Special emphasis was placed on the study of loading direction (i.e. weft and warp directions) effect on interlaminar shear strength and fracture toughness. Ten laboratories worldwide participated in this test (Table 1). Each laboratory was supplied with composite laminates and conducted the tests according to its own procedure. The results showed that although there were large variations in absolute magnitude between laboratories, a general trend was established with higher interlaminar fracture resistance in the weft direction than in the warp direction for a given silane agent. The larger number of strands running in the warp direction with rougher, more undulating areas perpendicular to the direction of crack propagation was mainly responsible for this result. The results also confirmed the previous finding that the mode I interlaminar fracture toughness increased with increasing silane agent concentration.  相似文献   

20.
《Composite Interfaces》2013,20(7-9):697-707
Spun and blown basalt fibers and their PP matrix composites were investigated. The composites were manufactured by hot pressing technology from carded and needle punched prefabricate using PP fiber as matrix material. Glass and blown basalt fibers were treated with reaction product of maleic acid-anhydride and sunflower oil while spun basalt fibers had a surface coating of silane coupling agent. Fibers were investigated with tensile tests while composites were subjected to static and dynamic mechanical tests. The results show that blown basalt fibers have relatively poor mechanical properties, while spun basalt fibers are comparable with glass fibers regarding geometry and mechanical performance. The static and dynamic mechanical properties of glass and spun basalt fiber reinforced composites are similar and are higher than blown basalt fiber reinforced composites. Results were supported with SEM micrographs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号