首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a systemic study of the structural and electronic properties of Cun nanowires (n=5, 9 and 13) encapsulated in armchair (8,8) gallium nitride nanotubes (GaNNTs) using the first-principles calculations. We find that the formation processes of these systems are all exothermic. The initial shapes are preserved without any visible changes for the Cu5@(8,8) and Cu9@(8,8) combined systems, but a quadratic-like cross-section shape is formed for the outer nanotube of the Cu13@(8,8) combined system due to the stronger attraction between nanowire and nanotube. The electrons of Ga and N atoms in outer GaN sheath affect the electron conductance of the encapsulated metallic nanowire in the Cu13@(8,8) combined system. But in the Cu5@(8,8) and Cu9@(8,8) combined systems, the conduction electrons are distributed only on the copper atoms, so charge transport will occur only in the inner copper nanowire, which is effectively insulated by the outer GaN nanotube. Considering the maximal metal filling ratio in nanotube, we know that the Cu9@(8,8) combined system is top-priority in the ultra-large-scale integration (ULSI) circuits and micro-electromechanical systems (MEMS) devices that demand steady transport of electrons.  相似文献   

2.
Under GGA, the structural, electronic and magnetic properties of single-wall (8, 8) GeC nanotubes filled with iron Fen nanowires (n = 5, 9, 13 and 21) have been investigated systematically using the first-principles PAW potential within DFT. We find that the initial shapes of the Fe5@(8, 8), Fe9@(8, 8) and Fe13@(8, 8) systems are preserved without any visible changes after optimization. But for the Fe21@(8, 8) system, the initial shapes are distorted largely for both nanowire and nanotube. The binding processes of Fen@(8, 8) systems are exothermic, and Fe5@(8, 8) system is the most stable structure. The pristine (8, 8) GeCNT is nonmagnetic and direct semiconductor with a wide band gap of about 2.65 eV. Projected densities of states onto different shell Fe atoms show that the separation between the bonding and antibonding d states is reduced as going from the core Fe atom to the outermost shell Fe atom. The spin polarization of the Fen@(8, 8) systems and free-standing nanowires are higher than that in bulk Fe. And the spin polarization generally decreases with the number n of the Fe atoms increasing for both the Fen@(8, 8) systems and free-standing nanowires. Both the largest spin polarization value itself and not more decrease with respect to value of free-standing Fe5 nanowire suggest the Fe5@(8, 8) system could be of interest for the use in electron spin injection. The magnetism is mainly confined within the inner Fe nanowire for these combined systems. More importantly, the Fe5 nanowire encapsulated inside (8, 8) GeCNT is under the protection of the GeCNT to prevent from oxidation, thus may stably exist in atmosphere for long time and can be expected to have potential applications in building nanodevices.  相似文献   

3.
A similar optimized structure, i.e. a near square cross-section shape for outside nanotube and a relative rotation between nanowire and its outside nanotube, is obtained for the transition-metal M13 (M = Fe, Co, Ni) nanowires with the FCC structure encapsulated inside the armchair (8, 8) silicon carbide nanotube [ M13@(8, 8)] . It is also found that the stabilities of M13 nanowires are enhanced by silicon carbide nanotube encapsulation. Although the spin polarization P of each hybrid system is slightly lowered with respect to the corresponding free-standing nanowire, the largest spin polarization value 71% of Co13@(8, 8) among the three hybrid systems suggests it could be utilized to construct efficient spin transport devices. As compared with the corresponding free-standing nanowire, the magnetic moments μ1 and μ2 for the peripheral M1 (especially) and M2 atoms are decreased, while the magnetic moments μ3 and μ4 for the interior M3 and M4 atoms are increased for each M13@(8, 8) hybrid system. In particular, different from the bulk FCC Fe that is antiferromagnetic, the minimum energy magnetic structure of FCC Fe13 free-standing nanowire is ferromagnetic. Furthermore, contrary to the cases of Co13 and Ni13 nanowires, the ferromagnetism is further enhanced after Fe13 nanowire is encapsulated inside (8, 8) silicon carbide nanotube.  相似文献   

4.
The structural, electronic and magnetic properties of hcp transition metal (TM = Fe, Co or Ni) nanowires TM4 encapsulated inside zigzag nanotubes C(m, 0) (m = 7, 8, 9, 10, 11 or 12), along with TM n (n = 4, 10 or 13) encapsulated inside C(12, 0), have been systematically investigated using the first-principle calculations. The results show that the TM nanowires can be inserted inside a variety of zigzag carbon nanotubes (CNTs) exothermically, except from the systems TM4@(7, 0) and TM13@(12, 0) which are endothermic. The charge is transferred from TM nanowires to CNTs, and the transferred charge increases with decreasing CNT diameter or increasing nanowire thickness. The magnetic moments of hybrid systems are smaller than those of the freestanding TM nanowires, especially for the atoms on the outermost shell of the nanowires. The magnetic moment per TM atom of TM/CNT system increases with increasing CNT diameter or decreasing nanowire thickness. Both the density of states and spin charge density analysis show that the spin polarization and the magnetic moments of all hybrid systems mainly originate from the TM nanowires, implying these systems can be applied in magnetic data storage devices.  相似文献   

5.
We present a systematic study on the structural and electronic properties of close-packed Cu nanowires encapsulated in a series of zigzag (n,0) BeONTs using first-principles calculations. The initial shapes (cylindrical CuNWs and BeONTs) are preserved without any visible changes for the Cum@(n,0) (m=6 or 8, 8≤n≤14) combined systems. The most stable combined systems are Cu6@(10,0) and Cu8@(11,0) with an optimal tube-wire distance of about 2.8 Å and a simple superposition of the band structures of their components near the Fermi level. A quantum conductance of 3G0 is obtained for both Cu6 and Cu8 nanowires in either free-standing state or filled into BeONTs. The electron transport will occur only through the inner CuNW and the inert outer BeONT serves well as insulating cable sheath. So the Cu6@(10,0) and Cu8@(11,0) combined systems is top-priority in the ULSI circuits and MEMS devices that demand steady transport of electrons.  相似文献   

6.
The structural and electronic properties of Cu5-1 and Cu6-1 nanowires with core-shell structures encapsulated inside a series zigzag (n,0) BeONTs denoted by Cu5-1@(n,0) and Cu6-1@(n,0) are investigated using the first-principles calculations within the generalized-gradient approximation. For Cu5-1@(n,0) (10 ? n ? 17) and Cu6-1@(n,0) (11 ? n ? 18) combined systems, the initial shapes (cylindrical BeONTs and CuNWs) are preserved without any visible change after optimization. The quantum conductances 5G 0 and 6G 0 of the most stable Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are identical to the corresponding free-standing Cu5-1 and Cu6-1 nanowires, respectively. The energy bands crossing the Fermi level in both the Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are all originated from the inner CuNWs. Therefore the electron transport will occur only through the inner CuNWs and the outer inert BeONTs serves well as an insulating cable sheath. The robust quantum conductance of the Cu5-1 and Cu6-1 nanowires, the insulating protection character of the (12,0) and (13,0) BeONTs and the highest stability of the tube-wire combined systems make the Cu5-1@(12,0) and Cu6-1@(13,0) combined systems are top-priority in the ULSI circuits and MEMS devices that demand steady transport of electrons.  相似文献   

7.
We have investigated the electronic and magnetic properties of Fe, Co, and Ni nanowires encapsulated in carbon nanotubes (CNTs) using spin polarized ab initio calculation. The incorporated systems with hollow region between the nanowire and the C shell have the enhanced magnetic moments compared to the ferromagnetic nanowires tightly wrapped by CNTs. The Co nanowire encapsulated in CNTs is a strong ferromagnet and has high spin polarization regardless of the distance between the nanowire and the C shell. The results show that the Co-filled CNTs are useful for spin polarized transport nanodevice.  相似文献   

8.
电化学沉积Fe与FePd纳米线阵列的磁性   总被引:4,自引:0,他引:4       下载免费PDF全文
利用电化学沉积方法在氧化铝模板中制备了一维Fe和Fe095Pd0 05合金纳米线阵列.两种样品均有(110)晶向择优取向,纳米线直径为60nm.在这一直径下形状各向异性 和内禀晶体各向异性的竞争结果很适合考察Pd掺杂的磁性行为.研究发现在FePd纳米线中, 由于极少量Pd在Fe中的合金化,减弱了晶体各向异性与形状各向异性的影响,改变了磁畴结 构,增强了畴壁钉扎作用,结果在Fe095Pd005纳米线 中便显示出强烈的沿线方向的各向异性,方形度和矫顽力也有较大改善. 关键词: 纳米线 电化学沉积 磁性  相似文献   

9.
10.
Fe1-x Co x nanowires are obtained by electrochemical deposition into the pores of track-etched membranes. The characteristics of the growth process that allow controlling the length and aspect ratio of the nanowires are established. The elemental composition and magnetic properties of the nanowires depend on the diameter of the track-etched pores, which varies from 30 to 200 nm, and the electrochemical potential U (650–850 mV), which determines the nanowire growth rate. According to the results of elemental analysis and the Mössbauer spectroscopy data, the Co content in Fe1-x Co x lies in the range of x=0.20?0.25. It is found that the orientation of the magnetic moment of Fe–Co nanoparticles in the wires depends both on the track pore size d and on the nanowire growth rate. Thus, the magnetic moments in nanowires grown in 50-nm-diameter pores are oriented within 0°–40° with respect to the nanowire axis. The magnetic properties of the nanowires are explained in the framework of a theoretical model describing the magnetic dynamics of nanocomposites, which was extended to include the relaxation of the magnetization vector and to take into account interaction between the particles. The key physical parameters important for the technological applications of the nanowires are determined, their dependence on the nanowire growth conditions is traced, and the possibility of controlling them is established.  相似文献   

11.
The Fe14.5Co16.5Ni55B15 and the Fe13Co15.5Ni51.5B20 ferromagnetic nanowires were deposited using the electrochemical deposition method. The structure of these nanowires was investigated using X-ray diffraction. Squid magnetometer was used to investigate the magnetic behavior. The hysteresis loops of 50 μm long nanowire arrays were studied as a function of boron concentration, nanowire diameter and field orientation. The competition between shape anisotropy and magnetostatic interactions played a vital role in determining the magnetic field necessary to saturate an array. The decrease in coercive field (Hc) and the squareness (SQ) of the hysteresis loop from 100 to 200 nm wire diameter for both types of compositions suggests the formation of multidomains in the nanowire.  相似文献   

12.
FeNi nanowires were fabricated by ac and pulse electrodeposition into the alumina template matrix. The effects of continuous ac electrodeposition as well as pulse features on the structure and magnetic properties of the nanowire arrays were studied. The microstructures and magnetic properties of the Fe x Ni1−x nanowires are seen to be independent of the deposition frequency and off-time between the pulses. The ac electrodeposited Ni nanowires were not formed at more than 400  Hz deposition frequency, while the Fe x Ni1−x nanowires, containing a small amount of Fe, formed in the all frequencies. For x less than 50% the coercivity slowly increases but over 50% Fe added to the FeNi alloy increases the coercivity with a higher rate and maximum coercivity was seen for the Fe0.97Ni0.03. The Fe and Fe x Ni1−x nanowires containing less than 30 at.% Ni was seen to have a bcc structures with (110) preferential direction while Fe x Ni1−x nanowires with more than 30 at.% Ni showed (110) bcc (Fe) and/or (111) bcc (FeNi) plus (111) fcc (Ni). A preferential (111) fcc structure was obtained for the Ni nanowires.  相似文献   

13.
高华  高大强  薛德胜 《中国物理 B》2011,20(5):57502-057502
The Fe100-xMox(13≤x≤25) alloy nanowire arrays are synthesized by electrodeposition of Fe 2+ and Mo 2+ with different ionic ratios into the anodic aluminum oxide templates.The crystals of Fe100-xMox alloy nanowires gradually change from polycrystalline phase to amorphous phase with the increase of the Mo content and the nanowires are of amorphous structure when the Mo content reaches 25 at%,which are revealed by the X-ray diffraction and the selected area electron diffraction patterns.As the Mo content increases,the magnetic hysteresis loops of Fe100-xMox alloy nanowires in parallel to the nanowire axis are not rectangular and the slopes of magnetic hysteresis loops increase.Those results indicate that the magnetostatic interactions between nanowires and the magnetocrystalline anisotropy both have significant influences on the magnetization reversal process of the nanowire arrays.  相似文献   

14.
解忧  张建民 《中国物理 B》2011,20(12):127302-127302
Under the generalized gradient approximation, the electronic structures and magnetic properties of Fe(1-x)Cox alloy nanowires encapsulated inside zigzag (10,0) carbon nanotubes (CNTs) are investigated systematically using firstprinciple density functional theory calculations. For the fully relaxed Fe(1-x)Cox/CNT structures, all the C atoms relax outwards, and thus the diameters of the CNTs are slightly increased. Formation energy analysis shows that the combining processes of all Fe(1-x)Cox/CNT systems are exothermic, and therefore the Fe(1-x)Coxalloy nanowires can be encapsulated into semiconducting zigzag (10,0) CNTs and form stable hybrid structures. The charges are transferred from the Fe(1-x)Coxnanowires to the more electronegative CNTs, and the Fe-C/Co-C bonds formed have polar covalent bond characteristics. Both the spin polarization and total magnetic moment of the Fe(1-x)Cox/CNT system are smaller than those of the corresponding freestanding Fe(1-x)Coxnanowire, and the magnetic moment of the Fe(1-x)Cox/CNT system decreases monotonously with increasing Co concentration, but the Fe(1-x)Cox/CNT systems still have a large magnetic moment, implying that they can be utilized in high-density magnetic recording devices.  相似文献   

15.
Stannic oxide (SnO2) nanowires have been prepared by Chemical vapor deposition (CVD). The low-temperature transport properties of a single SnO2 nanowire have been studied. It is found that the transport of the electrons in the nanowires is dominated by the Efros-Shklovskii variable-range hopping (ES-VRH) process due to the enhanced Coulomb interaction in this semiconducting nanowire. The temperature dependence of the resistance follows the relation lnRT−1/2. On the I-V and dI/dV curves of the nanowire a Coulomb gap-like structure at low temperatures appears.  相似文献   

16.
The transformations of phase composition of iron nanowires deposited into porous alumina template when annealing in the air were studied. The samples of iron nanowires of different diameter (8, 13, 15, 30 nm) were annealed for 1.5 h at temperature up to 600°C. In addition, for nanowires of 15 nm diameter the dependence of phase composition on annealing time was investigated. The phases were determined by applying Mössbauer spectroscopy. New Fe(II) and Fe(III) contributions to Mössbauer spectra were found and those were indentified as caused by the formation of hercynite FeAl2O4 and (Fe x Al1???x )2O3 with small x values (x?≤?0.15). It has been found that though initially the Fe(II) compound forms rapidly, afterwards its formation rate becomes lower than that of Fe(III) and after longer annealing time the Fe(III) content exceeds Fe(II) one.  相似文献   

17.
By using the first-principles calculations, we have systematically investigated the equilibrium structure, magnetic and electronic properties of one-dimensional Fe/Cu multilayered nanowires. We find that the stability of the Fe/Cu multilayered nanowires decreases with increasing concentration of nonmagnetic Cu layers, suggesting that rich Fe nanowires are more stable. Analysis of the average magnetic moment (μav) per Fe atom in the Fe/Cu multilayered nanowire suggests that there is a slight increase in μav with the increase in the number of nonmagnetic Cu layers, which was attributed to the increased Fe–Cu distance with increase in the Cu layers at interfacial layers. Furthermore, analysis of the band structures of these nanowires suggests strong dependence of conductance on the nonmagnetic Cu spacer layer thickness and a half-metallic character is observed for moderate Cu atoms substitutions, opening up the possibility for their application in magnetoelectronics or spintronics.  相似文献   

18.
史慧刚  付军丽  薛德胜 《物理学报》2005,54(8):3862-3866
利用电化学沉积方法在阳极氧化铝模板中制备了Fe89.7P10.3非晶 合金纳 米线阵列.利用x射线衍射仪、透射电子显微镜、振动样品磁强计和穆斯堡尔谱仪研究了样品的结构和磁性,发现纳米线阵列是非晶结构,且拥有垂直磁各向异性和高的矫顽力,Hc =304×104A/m.纳米线内部的平均超精细场和平均同质异能移分别为2 15×106 A/m和007 mm/s;而纳米线末端的平均超精细场(233×106 A/m )大于内 部的值,平均同质异能移(004 mm/s)小于内部的值.另外,纳米线内部Fe原子磁矩与线轴的夹角约为16°,而在纳米线末端Fe原子磁矩与线轴的夹角约为28°.这些结果表明,由于形状各 向异性,在纳米线中实现了无序非晶合金磁矩的有序排列. 关键词: 非晶合金 纳米线阵列 垂直磁各向异性 穆斯堡尔谱  相似文献   

19.
Ordered Fe2O3 nanowire arrays embedded in anodic alumina membranes have been fabricated by Sol–gel electrophoretic deposition. After annealing at 600 °C, the Fe2O3 nanowire arrays were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense, continuous and arranged roughly parallel to one another. XRD and SAED analysis together indicate that these Fe2O3 nanowires crystallize with a polycrystalline corundum structure. The optical absorption band edge of Fe2O3 nanowire arrays exhibits a blue shift with respect of that of the bulk Fe2O3 owing to the quantum size effect. PACS 78.67.Lt; 81.05.Je; 81.07.Vb  相似文献   

20.
The polypyrrole (PPy) nanowires are conducting 1D materials, which can significantly improve the electrical conductivity of the composites. A novel Li1.26Fe0.22Mn0.52O2 (LFMO) @ PPy nanowire composites were synthesized by simply ultrasonic dispersing LFMO and PPy nanowires in aqueous ethanol. The structure and morphology of pristine LFMO and LFMO@PPy are investigated by XRD, SEM, and TEM. The elemental mapping and FTIR results demonstrate the conductive network of PPy nanowires exists in the composites and the LFMO particles uniformly distribute on the PPy nanowires. LFMO combined with PPy nanowires exhibits better rate capability, higher capacity, coulombic efficiency, and cycleability than the pristine. The rate performance of composites with 10 wt% PPy nanowires shows the discharge capacities of 132.2 mAh/g and 98 mAh/g at 1C and 3C rate after 50 cycles, respectively. Electrochemical impedance spectroscopy test suggests that the conductive PPy nanowires can significantly decrease the charge-transfer resistance of LFMO. The composite with 10 wt% PPy nanowires shows a discharge capacity retention of 71% after 50 cycles at 1C, while the pristine sample only has 50% capacity retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号